Iron Loss Minimization Strategy for Predictive Torque Control of Induction Motor
Abstract
:1. Introduction
2. Induction Machine Loss Segregation
2.1. Stator Copper Losses
2.2. Constant Losses
2.3. Friction and Windage Losses
2.4. Iron Losses
3. Proposed Predictive Torque Control Strategy
3.1. Influence of DC-Link Voltage on the Drive Behavior
3.2. DC-Link Voltage Control Strategy
4. Experimental Results
4.1. Predictive Torque Control with Voltage Optimization
4.2. Iron Loss Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Nameplate Data | Mathematical Model Parameters | ||
---|---|---|---|
Nominal power | 5.5 kW | Stator resistance | 2.53 Ω |
Nominal voltage | 380 V | Rotor resistance | 2.62 Ω |
Nominal current | 11.8 A | Stator inductance | 0.616 H |
Nominal speed | 1430 min−1 | Rotor inductance | 0.616 H |
Number of poles | 4 | Magnetizing inductance | 0.592 H |
Winding connection | Y | Iron core resistance | 530 Ω |
DC Dynamometer | Synchronous Generator | ||
---|---|---|---|
Nominal power | 6.7 kW | Nominal power | 8 kW |
Nominal armature voltage | 220 V | Nominal stator voltage | 400 V |
Nominal armature current | 32.6 A | Nominal stator current | 14.5 A |
Nominal speed | 1500 min−1 | Nominal speed | 1500 min−1 |
Nominal excitation voltage | 220 V | Nominal excitation voltage | 32 V |
Nominal excitation current | 1.2 A | Nominal excitation current | 7.6 A |
References
- Karkkainen, H.; Aarniovuori, L.; Niemela, M.; Pyrhonen, J. Converter-Fed Induction Motor Efficiency: Practical Applicability of IEC Methods. IEEE Ind. Electron. Mag. 2017, 11, 45–57. [Google Scholar] [CrossRef]
- Aarniovuori, L.; Rasilo, P.; Niemelä, M.; Pyrhönen, J. Analysis of 37-kW Converter-Fed Induction Motor Losses. IEEE Trans. Ind. Electron. 2016, 63, 5357–5365. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; An, R.; Wu, T. Effect of voltage unbalance and distortion on the loss characteristics of three-phase cage induction motor. IET Electr. Power Appl. 2018, 12, 264–270. [Google Scholar] [CrossRef]
- Boglietti, A.; Ferraris, P.; Lazzari, M. and Pastorelli, M. Change of the iron losses with the switching supply frequency in soft magnetic materials supplied by PWM inverter. IEEE Trans. Magn. 1995, 31, 4250–4252. [Google Scholar] [CrossRef]
- Zhang, D.; Dai, H.; Zhao, H.; Wu, T. A Fast Identification Method for Rotor Flux Density Harmonics and Resulting Rotor Iron Losses of Inverter-Fed Induction Motors. IEEE Trans. Ind. Electron. 2018, 65, 5384–5394. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; Zhao, H.; Wu, T. An Analytical Iron Loss Calculation Model of Inverter-Fed Induction Motors Considering Supply and Slot Harmonics. IEEE Trans. Ind. Electron. 2019, 66, 9194–9204. [Google Scholar] [CrossRef]
- Xue, S.; Feng, J.; Guo, S.; Chen, Z.; Peng, J.; Chu, W.Q.; Xu, P.L.; Zhu, Z.Q. Iron Loss Model for Electrical Machine Fed by Low Switching Frequency Inverter. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Boglietti, A.; Ferraris, P.; Lazzari, M.; Pastorelli, M. Influence of the inverter characteristics on the iron losses in PWM inverter-fed induction motors. IEEE Trans. Ind. Appl. 1996, 32, 1190–1194. [Google Scholar] [CrossRef]
- Boglietti, A.; Ferraris, P.; Lazzari, M.; Profumo, F. Iron losses in magnetic materials with six-step and PWM inverter supply (induction motors). IEEE Trans. Magn. 1991, 27, 5334–5336. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Mei, X.; Rodríguez, J.; Kennel, R. Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control. Energies 2018, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Karamanakos, P.; Geyer, T. Guidelines for the Design of Finite Control Set Model Predictive Controllers. IEEE Trans. Power Electron. 2020, 35, 7434–7450. [Google Scholar] [CrossRef]
- Cho, Y.; Choi, W.J.; Lee, K.B. Model predictive control using a three-level inverter for induction motors with torque ripple reduction. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Busan, Korea, 26 February–1 March 2014; IEEE: New York, NY, USA, 2014; pp. 187–192. [Google Scholar]
- Karamanakos, P.; Geyer, T. Model Predictive Torque and Flux Control Minimizing Current Distortions. IEEE Trans. Power Electron. 2019, 34, 2007–2012. [Google Scholar] [CrossRef]
- Bhowate, A.; Aware, M.; Sharma, S. Synthetic Voltage Vector Selection Criteria in Predictive Torque Control for Performance Improvement of Three Phase Induction Motor Drive. In Proceedings of the 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019—ECCE Asia), Busan, Korea, 27–30 May 2019; IEEE: New York, NY, USA, 2019; pp. 1263–1267. [Google Scholar]
- Cho, Y.; Bak, Y.; Lee, K. Torque-Ripple Reduction and Fast Torque Response Strategy for Predictive Torque Control of Induction Motors. IEEE Trans. Power Electron. 2018, 33, 2458–2470. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H. Model Predictive Torque Control of Induction Motor Drives with Optimal Duty Cycle Control. IEEE Trans. Power Electron. 2014, 29, 6593–6603. [Google Scholar] [CrossRef]
- Geyer, T.; Quevedo, D.E. Performance of Multistep Finite Control Set Model Predictive Control for Power Electronics. IEEE Trans. Power Electron. 2015, 30, 1633–1644. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, Y. Model predictive control of three-level inverter-fed induction motor drives with switching frequency reduction. In Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON 2017), Beijing, China, 29 October–1 November 2017; IEEE: New York, NY, USA, 2017; pp. 6336–6341. [Google Scholar]
- Boglietti, A.; Ferraris, P.; Lazzari, M.; Profumo, F. Effects of different modulation index on the iron losses in soft magnetic materials supplied by PWM inverter. IEEE Trans. Magn. 1993, 29, 3234–3236. [Google Scholar] [CrossRef]
- Patel, Y.P.; Tallam, R.M.; Brown, B.P.; Busse, D.F.; Hu, J.; Campuzano, D.; Strandt, A.R. Mitigation of the Effects of Common-Mode Current on the Operation of SCR-Based Rectifiers for AC Drives. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; IEEE: New York, NY, USA, 2015; pp. 2949–2955. [Google Scholar]
- Youssef, A.B.; El Khil, S.K.; Slama-Belkhodja, I. State Observer-Based Sensor Fault Detection and Isolation, and Fault Tolerant Control of a Single-Phase PWM Rectifier for Electric Railway Traction. IEEE Trans. Power Electron. 2013, 28, 5842–5853. [Google Scholar] [CrossRef]
- He, L.; Xiong, J.; Ouyang, H.; Zhang, P.; Zhang, K. High-Performance Indirect Current Control Scheme for Railway Traction Four-Quadrant Converters. IEEE Trans. Ind. Electron. 2014, 61, 6645–6654. [Google Scholar] [CrossRef]
- Fuentealba Vidal, E.; Eidt Colling, I.; Barbi, I. A Bidirectional PWM Three-Phase Step-Down Rectifier Based on the Differential-Mode Power Conversion Principle. IEEE Trans. Power Electron. 2009, 24, 2951–2958. [Google Scholar]
- Drabek, P.; Peroutka, Z.; Pittermann, M.; Cedl, M. New Configuration of Traction Converter with Medium-Frequency Transformer Using Matrix Converters. IEEE Trans. Ind. Electron. 2011, 58, 5041–5048. [Google Scholar] [CrossRef]
- Chakraborty, S.; Vu, H.-N.; Hasan, M.M.; Tran, D.-D.; Baghdadi, M.E.; Hegazy, O. DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends. Energies 2019, 12, 1569. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Z.; Lu, T.; Yuan, L.; Xu, W.; Zhu, J. A comparative study of Luenberger observer, sliding mode observer and extended Kalman filter for sensorless vector control of induction motor drives. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; IEEE: New York, NY, USA, 2009; pp. 2466–2473. [Google Scholar]
- Gacho, J.; Zalman, M. IM Based Speed Servodrive with Luenberger Observer. J. Electr. Eng. 2016, 61, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Cortes, P. Predictive Control of Power Converters and Electrical Drives; Wiley-IEEE: Hoboken, NJ, USA, 2012; 246p. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlovsky, P.; Lipcak, O.; Bauer, J. Iron Loss Minimization Strategy for Predictive Torque Control of Induction Motor. Electronics 2020, 9, 566. https://doi.org/10.3390/electronics9040566
Karlovsky P, Lipcak O, Bauer J. Iron Loss Minimization Strategy for Predictive Torque Control of Induction Motor. Electronics. 2020; 9(4):566. https://doi.org/10.3390/electronics9040566
Chicago/Turabian StyleKarlovsky, Pavel, Ondrej Lipcak, and Jan Bauer. 2020. "Iron Loss Minimization Strategy for Predictive Torque Control of Induction Motor" Electronics 9, no. 4: 566. https://doi.org/10.3390/electronics9040566
APA StyleKarlovsky, P., Lipcak, O., & Bauer, J. (2020). Iron Loss Minimization Strategy for Predictive Torque Control of Induction Motor. Electronics, 9(4), 566. https://doi.org/10.3390/electronics9040566