Hardware-Simulator Development and Implementation for Hydraulic Turbine Generation Systems in a District Heating System
Abstract
:1. Introduction
2. Proposed Hardware-Simulator for HTGS
2.1. Power Board of Generator-Side Inverter
2.2. Power Board of Grid-Side Converter
2.3. Control Board of BTB Converter
3. Control Strategies and Sequence of BTB Converter
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verrilli, F.; Srinivasan, S.; Gambino, G.; Canelli, M.; Himanka, M.; Vecchio, C.D.; Sasso, M.; Glielmo, L. Model predictive control-based optimal operations of district heating system with thermal energy storage and flexible loads. IEEE Trans. Autom. Sci. Eng. 2017, 14, 547–557. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, W.; Wu, L.; Mei, S.; Shahidehpour, M.; Li, Z. Decentralized operation of interdependent power distribution network and district heating network: A market-driven approach. IEEE Trans. Smart Grid 2019, 10, 5374–5385. [Google Scholar] [CrossRef]
- Li, J.; Lin, J.; Song, Y.; Xing, X.; Fu, C. Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network. IEEE Trans. Sustain. Energy 2019, 10, 1672–1683. [Google Scholar] [CrossRef]
- Niu, S.; Wang, J.; Zhang, P.; Zhao, J.; Wang, S.; Shen, W. An energy-saving position control strategy for electro-hydraulic servo system with parallel dual valves. In Proceedings of the IEEE Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 3266–3271. [Google Scholar]
- Jeon, S.-S.; Bak, Y.; Lee, K.-B. Minimization of DC-link voltage variation in a hydraulic turbine generation system using back-to-back converters. Trans. Korean Inst. Electr. Eng. 2019, 68, 1118–1123. [Google Scholar] [CrossRef]
- Hajikhani, M.; Labeau, F.; Agba, B.L. An autonomous wireless sensor network in a substation area using wireless transfer of energy. IEEE Access 2018, 6, 62352–62360. [Google Scholar] [CrossRef]
- Hajikhani, M.; Labeau, F.; Agba, B.L. Power allocation for a self-sustainable power substation monitoring system using wireless transfer of energy. IEEE Access 2019, 7, 141456–141465. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, M.; Li, J. Detailed modelling and parameters optimisation analysis on governing system of hydro-turbine generator unit. IET Gener. Transm. Distrib. 2017, 12, 1045–1051. [Google Scholar] [CrossRef]
- Liu, J.; Xu, B.; Chen, D.; Li, J.; Gao, X.; Liu, G. Grid-connection analysis of hydro-turbine generator unit with stochastic disturbance. IET Renew. Power Gener. 2018, 13, 500–509. [Google Scholar] [CrossRef]
- Joseph, A.; Kim, S.-M.; Lee, S.S.; Dominic, A.; Lee, K.-B. Boost multi-level NPC-fed VS large rated asynchronous pumped storage hydro-generating unit. IET Electr. Power Appl. 2019, 13, 1488–1496. [Google Scholar] [CrossRef]
- Fan, Z.-N.; Han, L.; Liao, Y.; Xie, L.-D.; Wen, K.; Wang, J.; Dong, X.-C.; Yao, B. Effect of Shifting the Pole-shoe and Damper-bar Centerlines on the No-load Voltage Waveform of a Tubular Hydro-generator. J. Electr. Eng. Technol. 2018, 13, 1294–1303. [Google Scholar]
- Thankappan, A.T.; Simon, S.P.; Nayak, P.S.R.; Sundareswaran, K.; Padhy, N.P. Pico-hydel hybrid power generation system with an open well energy storage. IET Gener. Transm. Distrib. 2017, 11, 740–749. [Google Scholar] [CrossRef]
- Baek, J.; Kwak, S. Direct power control of PMa-SynRG with back-to-back PWM voltage-fed drive. J. Electr. Eng. Technol. 2018, 13, 761–768. [Google Scholar]
- Tcai, A.; Shin, H.-U.; Lee, K.-B. DC-link capacitor-current ripple reduction in DPWM-based back-to-back converters. IEEE Trans. Ind. Electron. 2018, 65, 1897–1907. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lee, K.-B.; Blaabjerg, F. Open-switch fault detection method of a back-to-back converter using NPC topology for wind turbine systems. IEEE Trans. Ind. Appl. 2015, 51, 325–335. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Kazmierkowski, M.P.; Rodriguez, J.; Kennel, R. Robust predictive control of three-level NPC back-to-back power converter PMSG wind turbine systems with revised predictions. IEEE Trans. Power Electron. 2018, 33, 9588–9598. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, J. An optimal damping control algorithm of direct two-level inverter for miniaturization and weight reduction of auxiliary power supply on railway vehicle. J. Electr. Eng. Technol. 2018, 13, 2335–2343. [Google Scholar]
- Zhang, T.; Chen, X.; Qi, C.; Lang, Z. Leg-by-leg-based finite-control-set model predictive control for two-level voltage-source inverters. J. Power Electron. 2019, 19, 1162–1170. [Google Scholar]
- Bak, Y.; Lee, K.-B. Constant speed control of a permanent-magnet synchronous motor using a reverse matrix converter under variable generator input conditions. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 315–326. [Google Scholar] [CrossRef]
- Bak, Y.; Lee, K.-B. Reducing switching losses in indirect matrix converter drives: Discontinuous PWM method. J. Power Electron. 2018, 18, 1325–1335. [Google Scholar]
- Bak, Y.; Jang, Y.; Lee, K.-B. Torque predictive control for permanent magnet synchronous motor drives using indirect matrix converter. J. Power Electron. 2019, 19, 1536–1543. [Google Scholar]
- Jlassi, I.; Cardoso, A.J.M. Fault-tolerant back-to-back converter for direct-drive PMSG wind turbines using direct torque and power control techniques. IEEE Trans. Power Electron. 2019, 34, 11215–11227. [Google Scholar] [CrossRef]
- Jo, S.-R.; Kim, S.-M.; Cho, S.; Lee, K.-B. Development of a hardware simulator for reliable design of modular multilevel converters based on junction-temperature of IGBT modules. Electronics 2019, 8, 1127. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Lee, K.-B. Hardware simulator development for a 3-parallel grid-connected PMSG wind power system. J. Power Electron. 2010, 10, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Lee, K.-B.; Blaabjerg, F. Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems. IEEE Trans. Power Electron. 2019, 34, 12368–12383. [Google Scholar] [CrossRef]
- Lee, K.-B. Advanced Power Electronics, 1st ed.; Munundang: Seoul, Korea, 2019; pp. 141–210. [Google Scholar]
- Jeong, H.-G.; Lee, K.-B. Power Electronics Technology of Wind Power Generation System, 1st ed.; Hanteemedia: Seoul, Korea, 2014; pp. 56–75. [Google Scholar]
- Bak, Y.; Lee, J.-S.; Lee, K.-B. Low-voltage ride-through control strategy for a grid-connected energy storage system. Appl. Sci. 2018, 8, 57. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value | |
---|---|---|
PMSG Parameters | Rated power | 5 kW |
Rated speed | 1750 rpm | |
Stator resistance | 0.158 Ω | |
d-axis inductance | 7.29 mH | |
q-axis inductance | 7.25 mH | |
Permanent magnet flux | 0.264 Wb | |
Pole | 8 | |
Moment of inertia | 6.66·10-3 kgm2 | |
System Parameters | Direct current (DC)-link capacitor | 2000 μF |
Grid phase voltage | 220 Vrms | |
Grid frequency | 60 Hz | |
Control period | 100 μs | |
Switching frequency | 10 kHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.-S.; Lee, Y.J.; Bak, Y.; Lee, K.-B. Hardware-Simulator Development and Implementation for Hydraulic Turbine Generation Systems in a District Heating System. Electronics 2020, 9, 368. https://doi.org/10.3390/electronics9020368
Jeon S-S, Lee YJ, Bak Y, Lee K-B. Hardware-Simulator Development and Implementation for Hydraulic Turbine Generation Systems in a District Heating System. Electronics. 2020; 9(2):368. https://doi.org/10.3390/electronics9020368
Chicago/Turabian StyleJeon, Sung-Soo, Young Jae Lee, Yeongsu Bak, and Kyo-Beum Lee. 2020. "Hardware-Simulator Development and Implementation for Hydraulic Turbine Generation Systems in a District Heating System" Electronics 9, no. 2: 368. https://doi.org/10.3390/electronics9020368
APA StyleJeon, S.-S., Lee, Y. J., Bak, Y., & Lee, K.-B. (2020). Hardware-Simulator Development and Implementation for Hydraulic Turbine Generation Systems in a District Heating System. Electronics, 9(2), 368. https://doi.org/10.3390/electronics9020368