A Novel Printable Tag of M-Shaped Strips for Chipless Radio-Frequency Identification in IoT Applications
Abstract
:1. Introduction
2. Tag Design
3. Simulation Results
4. Strip Length Variation Method
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulloni, V.; Donelli, M. Chipless RFID Sensors for the Internet of Things: Challenges and Opportunities. Sensors 2020, 20, 2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landaluce, H.; Arjona, L.; Perallos, A.; Falcone, F.; Angulo, I.; Muralter, F. A Review of IoT Sensing Applications and Challenges Using RFID and Wireless Sensor Networks. Sensors 2020, 20, 2495. [Google Scholar] [CrossRef] [PubMed]
- Babaeian, F.; Karmakar, N.C. Time and Frequency Domains Analysis of Chipless RFID Back-Scattered Tag Reflection. IoT 2020, 1, 7. [Google Scholar] [CrossRef]
- Kim, S. Inkjet-Printed Electronics on Paper for RF Identification (RFID) and Sensing. Electronics 2020, 9, 1636. [Google Scholar] [CrossRef]
- Forouzandeh, M.; Karmakar, N.C. Chipless RFID tags and sensors: A review on time-domain techniques. Wirel. Power Transf. 2015, 2, 62–77. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, S.; Wu, K.; Ni, Q.; Janecek, C.; Nordstad, J. Radio frequency identification: Technologies, applications, and research issues. Wirel. Commun. Mob. Comput. 2007, 7, 457–472. [Google Scholar] [CrossRef]
- Preradovic, S. Chipless RFID System for Barcode Replacement. Ph.D. Thesis, Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia, 2009. [Google Scholar]
- Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Martín, F. Chipless-RFID: A Review and Recent Developments. Sensors 2019, 19, 3385. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Karmakar, N.C. A novel compact printable dual-polarized chipless RFID system. IEEE Trans. Microw. Theory Tech. 2012, 60, 2142–2151. [Google Scholar] [CrossRef]
- Islam, M.A.; Karmakar, N.C. A 4 × 4 Dual Polarized mm-Wave ACMPA Array for a Universal mm-Wave Chipless RFID Tag Reader. IEEE Trans. Antennas Propag. 2015, 63, 1633–1640. [Google Scholar] [CrossRef]
- Islam, M.A.; Karmakar, N.C. Compact printable chipless RFID systems. IEEE Trans. Microw. Theory Tech. 2015, 63, 3785–3793. [Google Scholar] [CrossRef]
- Islam, M.A.; Karmakar, N.C. Real-World Implementation Challenges of a Novel Dual-Polarized Compact Printable Chipless RFID Tag. IEEE Trans. Microw. Theory Tech. 2015, 63, 4581–4591. [Google Scholar] [CrossRef]
- Pöpperl, M.; Parr, A.; Mandel, C.; Jakoby, R.; Vossiek, M. Potential and practical limits of time-domain reflectometry chipless RFID. IEEE Trans. Microw. Theory Tech. 2016, 64, 2968–2976. [Google Scholar] [CrossRef]
- Herrojo, C.; Mata-Contreras, J.; Paredes, F.; Núñez, A.; Ramon, E.; Martín, F. Near-Field Chipless-RFID System With Erasable/Programmable 40-bit Tags Inkjet Printed on Paper Substrates. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 272–274. [Google Scholar] [CrossRef]
- Islam, M.A.; Karmakar, N. A Compact Printable Dual-Polarized Chipless RFID Tag Using Slot Length Variation in ‘I’ Slot Resonators. In Proceedings of the European Microwave Conference (EuMC), Paris, France, 6–11 September 2015; pp. 96–99. [Google Scholar]
- Adbulkawi, W.M.; Sheta, A.A. A Compact Chipless RFID Tag Based on Frequency Signature. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017; pp. 1–4. [Google Scholar]
- Adbulkawi, W.M.; Sheta, A.A. Printable Chipless RFID Tags for IoT Applications. In Proceedings of the 2018 1st International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 4–6 April 2018; pp. 1–4. [Google Scholar]
- Balbin, I.; Karmakar, N.C. Phase-Encoded Chipless RFID Transponder for Large-Scale Low-Cost Applications. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 509–511. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Zomorrodi, M.; Karmakar, N.C. Spatial-Based Chipless RFID System. IEEE J. Radio Freq. Identif. 2019, 3, 46–55. [Google Scholar] [CrossRef]
- Babaeian, F.; Karmakar, N.C. Hybrid Chipless RFID Tags- A Pathway to EPC Global Standard. IEEE Access 2018, 6, 67415–67426. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. Chipless RFID tag using hybrid coding technique. IEEE Trans. Microw. Theory Tech. 2011, 59, 3356. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.A. High coding capacity chipless radiofrequency identification tags. Microw. Opt. Technol. Lett. 2020, 62, 592–599. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.-F.A. K-State Resonators for High-Coding-Capacity Chipless RFID Applications. IEEE Access 2019, 7, 185868–185878. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.-F.A. Four-state coupled-line resonator for chipless RFID tags application. Electronics 2019, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Genovesi, S.; Monorchio, A. Normalization-Free Chipless RFIDs by Using Dual-Polarized Interrogation. IEEE Trans. Microw. Theory Tech. 2016, 64, 310–318. [Google Scholar] [CrossRef]
- Marindra, A.M.J.; Tian, G.Y. Chipless RFID Sensor Tag for Metal Crack Detection and Characterization. IEEE Trans. Microw. Theory Tech. 2018, 66, 2452–2462. [Google Scholar] [CrossRef]
- Bibile, M.A.; Karmakar, N.C. Moving Chipless RFID Tag Detection Using Adaptive Wavelet-Based Detection Algorithm. IEEE Trans. Antennas Propag. 2018, 66, 2752–2760. [Google Scholar] [CrossRef]
- Issa, K.; Ashraf, M.A.; AlShareef, M.R.; Behairy, H.; Alshebeili, S.; Fathallah, H. A Novel L-Shape Ultra Wideband Chipless Radio-Frequency Identification Tag. Int. J. Antennas Propag. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-f.; Su, L. A compact dual-polarized chipless RFID tag by using nested concentric square loops. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1036–1039. [Google Scholar] [CrossRef]
- Islam, M.A.; Yap, Y.; Karmakar, N. ‘Δ’ Slotted Compact Printable Orientation Insensitive Chipless RFID Tag for Long Range Applications. In Proceedings of the 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2016; pp. 283–286. [Google Scholar]
- Rezaiesarlak, R.; Manteghi, M. Complex-natural-resonance-based design of chipless RFID tag for high-density data. IEEE Trans. Antennas Propag. 2014, 62, 898–904. [Google Scholar] [CrossRef]
- Wang, L.; Liu, T.; Sidén, J.; Wang, G. Design of chipless RFID tag by using miniaturized open-loop resonators. IEEE Trans. Antennas Propag. 2018, 66, 618–626. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.-F.A.; Issa, K.; Alshebeili, S.A. Compact Printable Inverted-M Shaped Chipless RFID Tag Using Dual-Polarized Excitation. Electronics 2019, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Genovesi, S.; Monorchio, A. A chipless RFID based on multiresonant high-impedance surfaces. IEEE Trans. Microw. Theory Tech. 2013, 61, 146–153. [Google Scholar] [CrossRef]
- Islam, M.A.; Karmakar, N. Design of a 16-bit Ultra-Low Cost Fully Printable Slot-Loaded Dual-Polarized Chipless RFID Tag. In Proceedings of the Asia-Pacific Microwave Conference, Melbourne, Victoria, Australia, 5–8 December 2011; pp. 1482–1485. [Google Scholar]
- Azim, R.-E.; Karmakar, N. A Collision Avoidance Methodology for Chipless RFID Tags. In Proceedings of the Asia-Pacific Microwave Conference, Melbourne, Victoria, Australia, 5–8 December 2011; pp. 1514–1517. [Google Scholar]
- Rezaiesarlak, R.; Manteghi, M. A space–time–frequency anticollision algorithm for identifying chipless RFID tags. IEEE Trans. Antennas Propag. 2013, 62, 1425–1432. [Google Scholar] [CrossRef]
- Rezaiesarlak, R.; Manteghi, M. A New Anti-Collision Algorithm for Identifying Chipless Rfid Tags. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 1722–1723. [Google Scholar]
- Rezaiesarlak, R.; Manteghi, M. On the application of short-time matrix pencil method for wideband scattering from resonant structures. IEEE Trans. Antennas Propag. 2014, 63, 328–335. [Google Scholar] [CrossRef]
- Karmakar, N.C. Anti-Collision Methods for Chipless RFID Systems. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar]
- Barahona, M.; Betancourt, D.; Ellinger, F. Using UWB IR Radar Technology to Decode Multiple Chipless RFID Tags. In Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–6. [Google Scholar]
- El-Awamry, A.; Khaliel, M.; Fawky, A.; Kaiser, T. A Novel Multi-Tag Identification Technique for Frequency Coded Chipless RFID Systems Based on Look-up-Table Approach. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2070–2074. [Google Scholar]
- Li, Z.; Lan, Y.; He, G.; He, S.; Wang, S. Chipless RFID Tag Anti-Collision Algorithm Based on Successive Approximation Comparative Amplitude Coding. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2396–2401. [Google Scholar]
- Karmakar, N.C.; Amin, E.M.; Saha, J.K. Chipless RFID Sensors; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Aminul Islam, M.; Bhuiyan, M.S.; Karmakar, N. A Novel Compact Chipless RFID Tag and Near-Field Reader. In Proceedings of the Asia-Pacific Microwave Conference Proceedings (APMC), Melbourne, Victoria, Australia, 5–8 December 2011; pp. 1518–1521. [Google Scholar]
- Svanda, M.; Polivka, M.; Havlicek, J.; Machac, J.; Werner, D.H. Platform Tolerant, High Encoding Capacity Dipole Array-Plate Chipless RFID Tags. IEEE Access 2019, 7, 138707–138720. [Google Scholar] [CrossRef]
- Mc Gee, K.; Anandarajah, P.; Collins, D. A review of chipless remote sensing solutions based on RFID technology. Sensors 2019, 19, 4829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svanda, M.; Havlicek, J.; Machac, J.; Polivka, M. Polarisation independent chipless RFID tag based on circular arrangement of dual-spiral capacitively-loaded dipoles with robust RCS response. IET Microw. Antennas Propag. 2018, 12, 2167–2171. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Li, G.J.; Roberts, R.; Jiang, L.J. Log-periodic dipole array antenna as chipless RFID tag. Electron. Lett. 2014, 50, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Khaliel, M.; El-Awamry, A.; Megahed, A.F.; Kaiser, T. A novel design approach for co/cross-polarizing chipless RFID tags of high coding capacity. IEEE J. Radio Freq. Identif. 2017, 1, 135–143. [Google Scholar] [CrossRef]
- Svanda, M.; Polivka, M.; Havlicek, J.; Machac, J. Chipless RFID tag with an improved magnitude and robustness of RCS response. Microw. Opt. Technol. Lett. 2017, 59, 488–492. [Google Scholar] [CrossRef]
- Deng, F.; He, Y.; Li, B.; Song, Y.; Wu, X. Design of a slotted chipless RFID humidity sensor tag. Sens. Actuators B: Chem. 2018, 264, 255–262. [Google Scholar] [CrossRef]
- Sharma, V.; Malhotra, S.; Hashmi, M. Slot Resonator Based Novel Orientation Independent Chipless RFID Tag Configurations. IEEE Sens. J. 2019, 19, 5153–5160. [Google Scholar] [CrossRef]
- Sajitha, V.; Nijas, C.; Roshna, T.; Vasudevan, K.; Mohanan, P. Compact cross loop resonator based chipless RFID tag with polarization insensitivity. Microw. Opt. Technol. Lett. 2016, 58, 944–947. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Wu, X.; Xia, Z.; Wen, W. Multi-band metamaterial absorber with arbitrary polarization and wide-incident angle. Appl. Phys. A 2017, 123, 651. [Google Scholar] [CrossRef]
- Ni, Y.-Z.; Huang, X.-D.; Lv, Y.-P.; Cheng, C.-H. Hybrid coding chipless tag based on impedance loading. IET Microw. Antennas Propag. 2017, 11, 1325–1331. [Google Scholar] [CrossRef]
- Fan, S.; Chang, T.; Liu, X.; Fan, Y.; Tentzeris, M.M. A Depolarizing Chipless RFID Tag with Humidity Sensing Capability. In Proceedings of the International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 2469–2470. [Google Scholar]
- Nijas, C.; Deepak, U.; Vinesh, P.; Sujith, R.; Mridula, S.; Vasudevan, K.; Mohanan, P. Low-cost multiple-bit encoded chipless RFID tag using stepped impedance resonator. IEEE Trans. Antennas Propag. 2014, 62, 4762–4770. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. A fully printable chipless RFID tag with detuning correction technique. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 209–211. [Google Scholar] [CrossRef]
- Polivka, M.; Havlicek, J.; Svanda, M.; Machac, J. Improvement in robustness and recognizability of RCS response of U-shaped strip-based chipless RFID tags. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 2000–2003. [Google Scholar] [CrossRef]
- Rance, O.; Siragusa, R.; Lemaitre-Auger, P.; Perret, E. Toward RCS magnitude level coding for chipless RFID. IEEE Trans. Microw. Theory Tech. 2016, 64, 2315–2325. [Google Scholar] [CrossRef]
- Laila, D.; Thomas, R.; Nijas, C.M.; Mohanan, P. A novel polarization independent chipless RFID tag using multiple resonators. Prog. Electromagn. Res. 2015, 55, 61–66. [Google Scholar] [CrossRef] [Green Version]
Parameter | Strip Length (mm) | ||
---|---|---|---|
l1 | l1′ | 14 | 41.72 |
l1″ | 6.862215 | ||
l2 | l2′ | 13.31262 | 39.07 |
l2″ | 6.221409 | ||
l3 | l3′ | 12.62523 | 36.41 |
l3″ | 5.580922 | ||
l4 | l4′ | 11.93785 | 33.79 |
l4″ | 4.958283 | ||
l5 | l5′ | 11.25046 | 31.1 |
l5″ | 4.301478 | ||
l6 | l6′ | 10.56308 | 28.42 |
l6″ | 3.644746 | ||
l7 | l7′ | 9.875692 | 25.73 |
l7″ | 2.98813 | ||
l8 | l8′ | 9.188308 | 23.08 |
l8″ | 2.351033 | ||
l9 | l9′ | 8.500923 | 20.44 |
l9″ | 1.717732 | ||
l10 | l10′ | 7.813538 | 17.72 |
l10″ | 1.044021 |
Resonance Frequency (GHz) | Polarization Type | Difference (MHz) | ||
---|---|---|---|---|
Description | Parameter | Vertical | Horizontal | |
Resonance of 1st strip | f1 | 2.932 | 3.030 | 98 |
Resonance of 2nd strip | f2 | 3.254 | 3.268 | 14 |
Resonance of 3rd strip | f3 | 3.520 | 3.534 | 14 |
Resonance of 4th strip | f4 | 3.856 | 3.912 | 56 |
Resonance of 5th strip | f5 | 4.234 | 4.276 | 42 |
Resonance of 6th strip | f6 | 4.682 | 4.724 | 42 |
Resonance of 7th strip | f7 | 5.158 | 5.214 | 56 |
Resonance of 8th strip | f8 | 5.718 | 5.788 | 70 |
Resonance of 9th strip | f9 | 6.390 | 6.530 | 140 |
Resonance of 10th strip | f10 | 7.426 | 7.496 | 70 |
Structure | Strip Length | State | Resonant Frequency | Binary Code |
---|---|---|---|---|
Strip i with open circuits | 1st state | 0 | 00 | |
The length of strip i (li) decreased by factor | 2nd state | 01 | ||
The length of strip i (li) increased by factor | 3rd state | 10 | ||
Original strip | 4th state | 11 |
Extended Length | Original Length | Shortened Length | |||||
---|---|---|---|---|---|---|---|
Parameter | Value (GHz) | Difference (MHz) | Parameter | Value (GHz) | Parameter | Value (GHz) | Difference (MHz) |
2.862 | 168 | 3.030 | 3.072 | 42 | |||
3.156 | 112 | 3.268 | 3.310 | 42 | |||
3.478 | 56 | 3.534 | 3.562 | 28 | |||
3.800 | 112 | 3.912 | 3.954 | 42 | |||
4.206 | 70 | 4.276 | 4.388 | 112 | |||
4.598 | 126 | 4.724 | 4.822 | 98 | |||
5.032 | 182 | 5.214 | 5.312 | 98 | |||
5.592 | 196 | 5.788 | 5.914 | 126 | |||
6.306 | 224 | 6.530 | 6.642 | 112 | |||
7.314 | 182 | 7.496 | 7.636 | 140 |
Resonator Type | Frequency Band (GHz) | Capacity (bits) | Spectral Capacity (bits/GHz) | Spatial Density (bits/cm2) | Spatial Density at the Center Frequency (bits/λ2) | Encoding Capacity (bits/cm2/GHz) | Encoding Capacity at the Center Frequency (bits/λ2/GHz) | Size (mm2) |
---|---|---|---|---|---|---|---|---|
Loaded dipoles [48] | 1.8–3.6 | 20 | 11.11 | 0.66 | 81.51 | 0.37 | 45.28 | 55 × 55 |
Dipole array [46] | 2.2–3.5 | 20 | 15.38 | 0.56 | 61.47 | 0.43 | 47.28 | 60 × 60 |
Log-periodic dipole [49] | 2–12 | 7 | 0.7 | 0.09 | 1.68 | 0.01 | 0.17 | 87 × 87 |
Crossed dipoles [50] | 2–5 | 4 | 1.33 | 0.2 | 14.49 | 0.07 | 4.83 | 45 × 45 |
Slotted-I [11] | 6–12 | 18 | 3 | 4.08 | 45.29 | 0.68 | 7.55 | 21 × 21 |
Slotted-U [51] | 2–4 | 20 | 10 | 0.77 | 76.82 | 0.39 | 38.41 | 50 × 52 |
Slotted-I [52] | 3–7 | 6 | 1.5 | 0.38 | 13.48 | 0.1 | 3.37 | 40 × 40 |
Slotted-L [53] | 3–6 | 8 | 2.67 | 2 | 88.76 | 0.67 | 29.59 | 20 × 20 |
Slotted-U [45] | 7–12 | 8 | 1.6 | 3.13 | 31.13 | 0.63 | 6.23 | 16 × 16 |
Slotted-delta [30] | 3–10 | 18 | 2.57 | 2.11 | 44.98 | 0.30 | 6.43 | 32 × 27 |
Square loop [34] | 2–8 | 5 | 0.83 | 2.22 | 79.89 | 0.37 | 13.31 | 15 × 15 |
Plus loop [54] | 3.8–8.8 | 20 | 4 | 1.25 | 28.31 | 0.25 | 5.66 | 40 × 40 |
Concentric ring [55] | 3–13 | 4 | 0.4 | 2.04 | 28.65 | 0.20 | 2.87 | 14 × 14 |
Loaded ring [56] | 3–9 | 23.7 | 3.96 | 2.63 | 49.97 | 0.44 | 8.33 | 30 × 30 |
Nested scatterers [57] | 4–7.5 | 6 | 1.71 | 2.67 | 72.5 | 0.76 | 20.71 | 15 × 15 |
Stepped impedance resonators [58] | 3.1–10.6 | 6.36 | 0.85 | 1.06 | 20.3 | 0.14 | 2.71 | 30 × 20 |
C-strips [59] | 2–4 | 20 | 10 | 1.14 | 114.13 | 0.57 | 57.07 | 70 × 25 |
C-strips [60] | 2–4 | 20 | 10 | 1.10 | 109.74 | 0.55 | 54.87 | 70 × 26 |
C-strips [61] | 2–5 | 5 | 1.67 | 0.33 | 25 | 0.11 | 8.33 | 50 × 30 |
U-strips [12] | 7–12 | 16 | 3.2 | 16.67 | 165.96 | 1.75 | 17.47 | 16 × 6 |
L-strips [62] | 3.1–10.6 | 6 | 0.8 | 0.3 | 5.79 | 0.04 | 0.77 | 62 × 32 |
L-strips [28] | 5–10 | 9 | 1.8 | 6 | 95.87 | 0.8 | 12.78 | 15 × 10 |
The proposed tag | 3–7.5 | 20 | 4.44 | 11 | 358.33 | 2.44 | 79.63 | 14 × 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkawi, W.M.; Issa, K.; Sheta, A.-F.A.; Alshebeili, S.A. A Novel Printable Tag of M-Shaped Strips for Chipless Radio-Frequency Identification in IoT Applications. Electronics 2020, 9, 2116. https://doi.org/10.3390/electronics9122116
Abdulkawi WM, Issa K, Sheta A-FA, Alshebeili SA. A Novel Printable Tag of M-Shaped Strips for Chipless Radio-Frequency Identification in IoT Applications. Electronics. 2020; 9(12):2116. https://doi.org/10.3390/electronics9122116
Chicago/Turabian StyleAbdulkawi, Wazie M., Khaled Issa, Abdel-Fattah A. Sheta, and Saleh A. Alshebeili. 2020. "A Novel Printable Tag of M-Shaped Strips for Chipless Radio-Frequency Identification in IoT Applications" Electronics 9, no. 12: 2116. https://doi.org/10.3390/electronics9122116
APA StyleAbdulkawi, W. M., Issa, K., Sheta, A.-F. A., & Alshebeili, S. A. (2020). A Novel Printable Tag of M-Shaped Strips for Chipless Radio-Frequency Identification in IoT Applications. Electronics, 9(12), 2116. https://doi.org/10.3390/electronics9122116