# Wind Energy Harnessing in a Railway Infrastructure: Converter Topology and Control Proposal

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Wind Energy Conversion

#### 2.1. Wind Turbine

#### 2.2. PMSG Modelling

#### 2.3. Diode Bridge and Boost Control: MPPT

## 3. Converter Parallelization

## 4. Power Delivery to Catenary: Isolated DAB

## 5. Model and Simulation Results

#### 5.1. Simulation Model

^{®}/Simulink

^{®}. The VAWT, PMSG and the boost converter are shown in Figure 6a, and the SST model is shown in Figure 6b, listing the parameter values in Table 2.

#### 5.2. Simulation Results

#### 5.3. Faulty Scenario

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- IEA. World Energy Balances 2018; IEA: Paris, France, 2018. [Google Scholar]
- IEA. Tracking Transport 2020; IEA: Paris, France, 2020. [Google Scholar]
- Falcone, P.M.; Lopolito, A.; Sica, E. The networking dynamics of the Italian biofuel industry in time of crisis: Finding an effective instrument mix for fostering a sustainable energy transition. Energy Policy
**2018**, 112, 334–348. [Google Scholar] [CrossRef] - Helliwell, R.; Tomei, J. Practicing stewardship: EU biofuels policy and certification in the UK and Guatemala. Agric. Hum. Values
**2016**, 34, 473–484. [Google Scholar] [CrossRef] [Green Version] - Bae, C.; Jang, D.; Kim, Y.; Chang, S.; Mok, J. Calculation of regenerative energy in DC 1500V electric railway substations. In Proceedings of the Internatonal Conference on Power Electronics, Daegu, Korea, 22–26 October 2007; pp. 801–805. [Google Scholar] [CrossRef]
- Abril, M.; Barber, F.; Ingolotti, L.; Salido, M.A.; Tormos, P.; Lova, A. An assessment of railway capacity. Transp. Res. Part E Logist. Transp. Rev.
**2008**, 44, 774–806. [Google Scholar] [CrossRef] [Green Version] - Falcone, P.M. Analysing stakeholders’ perspectives towards a socio-technical change: The energy transition journey in Gela Municipality. AIMS Energy
**2018**, 6, 645. [Google Scholar] [CrossRef] - Laskar, M.A.R. Piezoelectricity: An Energy Source for Future Railway Stations. SEU J. Sci. Eng.
**2017**, 11. [Google Scholar] [CrossRef] - Baker, C. The flow around high speed trains. J. Wind Eng. Ind. Aerodyn.
**2010**, 98, 277–298. [Google Scholar] [CrossRef] - Kwon, H.B.; Park, C.S. An experimental study on the relationship between ballast flying phenomenon and strong wind under high speed train. In Proceedings of the World Congress on Rail Research, Montreal, QC, Canada, 3–6 June 2006. [Google Scholar]
- Joshi, S.; Mathur, A.; Jain, A.; Gupta, S.; Jani, N.; Chhabra, B. Generation of electricity using wind energy produced due to the motion of trains. J. Energy Technol. Policy
**2012**, 2, 19–23. [Google Scholar] - Kumar, A.; Karandikar, P.; Chavan, D.S. Generating and saving energy by installing wind turbines along the railway tracks. In Proceedings of the 2015 International Conference on Energy Systems and Applications, Pune, India, 30 October–1 November 2015. [Google Scholar] [CrossRef]
- Pan, H.; Li, H.; Zhang, T.; Laghari, A.A.; Zhang, Z.; Yuan, Y.; Qian, B. A portable renewable wind energy harvesting system integrated S-rotor and H-rotor for self-powered applications in high-speed railway tunnels. Energy Convers. Manag.
**2019**, 196, 56–68. [Google Scholar] [CrossRef] - Asensio, F.J.; San Martín, J.I.; Zamora, I.; Oñederra, O.; Saldaña, G.; Eguia, P. A system approach to harnessing wind energy in a railway infrastructure. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society (IECON), Washington, DC, USA, 21–23 October 2018; pp. 1646–1651. [Google Scholar] [CrossRef]
- Vivek, C.M.; Gopikrishnan, P.; Murugesh, R.; Mohamed, R.R. A review on vertical and horizontal axis wind turbine. Int. Res. J. Eng. Technol.
**2017**, 4, 240–250. [Google Scholar] - Battisti, L.; Benini, E.; Brighenti, A.; Dell’Anna, S.; Castelli, M.R. Small wind turbine effectiveness in the urban environment. Renew. Energy
**2018**, 129, 102–113. [Google Scholar] [CrossRef] - Li, S.; Haskew, T.A.; Xu, L. Conventional and novel control designs for direct driven PMSG wind turbines. Electr. Power Syst. Res.
**2010**, 80, 328–338. [Google Scholar] [CrossRef] - Shehata, E.G. A comparative study of current control schemes for a direct-driven PMSG wind energy generation system. Electr. Power Syst. Res.
**2017**, 143, 197–205. [Google Scholar] [CrossRef] - Devashish, T.A. A comprehensive review on wind energy system for electric power generation: Current situation and improved technologies to realize future development. Int. J. Renew. Energy Res.
**2017**, 7, 1786–1805. [Google Scholar] - Urtasun, A.; Sanchis, P.; Martín, I.S.; López, J.; Marroyo, L. Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking. Renew. Energy
**2013**, 55, 138–149. [Google Scholar] [CrossRef] [Green Version] - Baroudi, J.A.; Dinavahi, V.; Knight, A.M. A review of power converter topologies for wind generators. Renew. Energy
**2007**, 32, 2369–2385. [Google Scholar] [CrossRef] - Kumar, D.; Chatterjee, K. A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev.
**2016**, 55, 957–970. [Google Scholar] [CrossRef] - Kumar, M.B.H.; Saravanan, B.; Sanjeevikumar, P.; Blaabjerg, F. Review on control techniques and methodologies for maximum power extraction from wind energy systems. IET Renew. Power Gener.
**2018**, 12, 1609–1622. [Google Scholar] [CrossRef] - Abdullah, M.; Yatim, A.; Tan, C.; Saidur, R. A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev.
**2012**, 16, 3220–3227. [Google Scholar] [CrossRef] - Kot, R.; Rolak, M.; Malinowski, M. Comparison of maximum peak power tracking algorithms for a small wind turbine. Math. Comput. Simul.
**2013**, 91, 29–40. [Google Scholar] [CrossRef] - Cheng, M.; Zhu, Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers. Manag.
**2014**, 88, 332–347. [Google Scholar] [CrossRef] - Menezes, E.J.N.; Araújo, A.M.; da Silva, N.S.B. A review on wind turbine control and its associated methods. J. Clean. Prod.
**2018**, 174, 945–953. [Google Scholar] [CrossRef] - Sarkar, J.; Khule, S.S. A study of MPPT schemes in PMSG based wind turbine system. In Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 100–105. [Google Scholar] [CrossRef]
- Nasiri, M.; Milimonfared, J.; Fathi, S.H. Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines. Energy Convers. Manag.
**2014**, 86, 892–900. [Google Scholar] [CrossRef] - Wei, C.; Zhang, Z.; Qiao, W.; Qu, L. An adaptive network-based reinforcement learning method for MPPT control of PMSG wind energy conversion systems. IEEE Trans. Power Electron.
**2016**, 31, 7837–7848. [Google Scholar] [CrossRef] - Dalala, Z.M.; Zahid, Z.U.; Yu, W.; Cho, Y.; Lai, J. Design and analysis of an MPPT technique for small-scale wind energy conversion systems. IEEE Trans. Energy Convers.
**2013**, 28, 756–767. [Google Scholar] [CrossRef] - Llano, D.X.; McMahon, R.A. Control techniques with system efficiency comparison for microwind turbines. IEEE Trans. Sustain. Energy
**2017**, 8, 1609–1617. [Google Scholar] [CrossRef] [Green Version] - Jeong, H.G.; Seung, R.H.; Lee, K.B. An Improved Maximum Power Point Tracking Method for Wind Power Systems. Energies
**2012**, 5, 1339–1354. [Google Scholar] [CrossRef] [Green Version] - Kolesnik, S.; Kuperman, A. Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators. Energies
**2017**, 10, 1498. [Google Scholar] [CrossRef] [Green Version] - Syahputra, R.; Soesanti, I. Performance Improvement for Small-Scale Wind Turbine System Based on Maximum Power Point Tracking Control. Energies
**2019**, 12, 3938. [Google Scholar] [CrossRef] [Green Version] - Augustine, S.; Mishra, M.K.; Lakshminarasamma, N. Circulating current minimization and current sharing control of parallel boost converters based on droop index. In Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, 27–30 August 2013; pp. 454–460. [Google Scholar] [CrossRef]
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron.
**2016**, 31, 4876–4891. [Google Scholar] - Zheng, X.; Ali, H.; Wu, X.; Zaman, H.; Khan, S. Non-Linear Behavioral Modeling for DC-DC Converters and Dynamic Analysis of Distributed Energy Systems. Energies
**2017**, 10, 63. [Google Scholar] [CrossRef] - Gao, F.; Bozhko, S.; Costabeber, A.; Patel, C.; Wheeler, P.; Hill, C.I.; Asher, G. Comparative stability analysis of droop control approaches in voltage-source-converter-based DC microgrids. IEEE Trans. Power Electron.
**2016**, 32, 2395–2415. [Google Scholar] [CrossRef] - Chiang, H.; Jen, K.; You, G. Improved droop control method with precise current sharing and voltage regulation. IET Power Electron.
**2016**, 9, 789–800. [Google Scholar] [CrossRef] - Huang, Y.; Tse, C.K. Circuit theoretic classification of parallel connected DC-DC converters. IEEE Trans. Circuits Syst. I Regul. Pap.
**2007**, 54, 1099–1108. [Google Scholar] [CrossRef] [Green Version] - Freijedo, F.D.; Rodriguez-Diaz, E.; Dujic, D. Stable and passive high-power dual active bridge converters interfacing MVDC grids. IEEE Trans. Ind. Electron.
**2018**, 65, 9561–9570. [Google Scholar] [CrossRef] - Xiong, F.; Wu, J.; Hao, L.; Liu, Z. Backflow Power Optimization Control for Dual Active Bridge DC-DC Converters. Energies
**2017**, 10, 1403. [Google Scholar] [CrossRef] [Green Version] - Vazquez, A.; Martin, K.; Arias, M.; Sebastian, J. On Bidirectional DC Nano-Grids: Design Considerations and an Architecture Proposal. Energies
**2019**, 12, 3715. [Google Scholar] [CrossRef] [Green Version] - Yuan, L.; Lu, Z.; Sun, J.; Duan, R.; Zhao, Z. Comparative evaluation of isolated bidirectional DC/DC converter in high-power high-frequency occasions. In Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 7–10 October 2018. [Google Scholar] [CrossRef]
- Samejima, T.; Kintsu, K.; Morizane, T.; Kimura, N. Comparison of core material of high frequency transformer for offshore wind generation. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018. [Google Scholar] [CrossRef]
- Yeh, C.S.; Lai, J.S. A study on high frequency transformer design in medium-voltage solid-state transformers. In Proceedings of the Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 30 October–2 November 2018. [Google Scholar] [CrossRef]
- Sarker, P.C.; Islam, M.R.; Guo, Y.; Zhu, J.; Lu, H.Y. State-of-the-art technologies for development of high frequency transformers with advanced magnetic materials. IEEE Trans. Appl. Supercond.
**2019**, 29, 1–11. [Google Scholar] [CrossRef] [Green Version] - Doncker, R.W.A.A.D.; Divan, D.M.; Kheraluwala, M.H. A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl.
**1991**, 27, 63–73. [Google Scholar] [CrossRef] - Qin, H.; Kimball, J.W. Closed-loop control of DC–DC dual-active-bridge converters driving single-phase inverters. IEEE Trans. Power Electron.
**2014**, 29, 1006–1017. [Google Scholar] [CrossRef] - Song, W.; Hou, N.; Wu, M. Virtual direct power control scheme of dual active bridge DC–DC converters for fast dynamic response. IEEE Trans. Power Electron.
**2018**, 33, 1750–1759. [Google Scholar] [CrossRef] - Zhao, B.; Yu, Q.; Sun, W. Extended-phase-shift control of isolated bidirectional DC–DC converter for power distribution in microgrid. IEEE Trans. Power Electron.
**2012**, 27, 4667–4680. [Google Scholar] [CrossRef] - Karthikeyan, V.; Gupta, R. Closed-loop control of isolated dual active bridge converter using dual phase shift modulation. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society (IECON), Yokohama, Japan, 9–12 November 2015. [Google Scholar] [CrossRef]
- Bai, H.; Mi, C. Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC converters using novel dual-phase-shift control. IEEE Trans. Power Electron.
**2008**, 23, 2905–2914. [Google Scholar] [CrossRef] - Wu, K.; de Silva, C.W.; Dunford, W.G. Stability analysis of isolated bidirectional dual active full-bridge DC–DC converter with triple phase-shift control. IEEE Trans. Power Electron.
**2012**, 27, 2007–2017. [Google Scholar] [CrossRef] - Calderon, C.; Barrado, A.; Rodriguez, A.; Alou, P.; Lazaro, A.; Fernandez, C.; Zumel, P. General Analysis of Switching Modes in a Dual Active Bridge with Triple Phase Shift Modulation. Energies
**2018**, 11, 2419. [Google Scholar] [CrossRef] [Green Version] - Zhou, H.; Khambadkone, A.M. Hybrid modulation for dual-active-bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans. Ind. Appl.
**2009**, 45, 1434–1442. [Google Scholar] [CrossRef] - Jauch, F.; Biela, J. Generalized modeling and optimization of a bidirectional dual active bridge DC-DC converter including frequency variation. In Proceedings of the International Power Electronics Conference (IPEC), Hiroshima, Japan, 18–21 May 2014. [Google Scholar] [CrossRef]
- Krismer, F.; Round, S.; Kolar, J.W. Performance optimization of a high current dual active bridge with a wide operating voltage range. In Proceedings of the IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006. [Google Scholar] [CrossRef] [Green Version]
- Itoh, J.-i.; Higa, H.; Nagano, T. A novel control method focusing on reactive power for a dual active bridge converter. In Proceedings of the International Power Electronics and Application Conference and Exposition, Shanghai, China, 5–8 November 2014. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Liu, G.; Zhao, Y. Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge DC-DC converter under PWM plus phase-shift control. IEEE Trans. Power Electron.
**2015**, 30, 6488–6494. [Google Scholar] [CrossRef] - Choi, W.; Rho, K.M.; Cho, B.H. Fundamental duty modulation of dual-active-bridge converter for wide-range operation. IEEE Trans. Power Electron.
**2016**, 31, 4048–4064. [Google Scholar] [CrossRef] - Shi, L.; Lei, W.; Li, Z.; Cui, Y.; Huang, J.; Wang, Y. Stability analysis of digitally controlled dual active bridge converters. J. Mod. Power Syst. Clean Energy
**2017**, 6, 375–383. [Google Scholar] [CrossRef] [Green Version]

Algorithm | Complexity | Convergence Speed | Memory Requirement | Wind Speed Measurement | Performance under Varying Wind Conditions | Prior Training/Knowledge |
---|---|---|---|---|---|---|

TSR | Simple | Fast | No | Yes | Moderate | Not required |

OT | Simple | Fast | No | No | Moderate | Required |

PSF | Simple | Fast | Yes | Yes | Moderate | Required |

HCS | Simple | Low | No | No | Moderate | Not required |

HCS with FS and AS | High | Medium | No | No | Good | Not required |

Modified HCS | High | Fast | No | No | Very good | Not required |

INC | Simple | Low | No | No | Moderate | Not required |

Modified INC | Medium | Medium | No | No | Good | Not required |

ORB | Simple | Medium | No | No | Moderate | Not required |

Hybrid | Medium | Fast | No | No | Good | Not required |

Fuzzy-based | High | Medium | Yes | Depends | Very good | Required |

NN-based | High | Medium | Yes | Depends | Very good | Required |

Adaptive | High | Medium | Yes | Depends | Very good | Required |

MVPO | High | Low | No | No | Good | Not required |

Wind turbine | |
---|---|

VAWT | Kliux Zebra 4 kW |

Boost converter | |

${L}_{boost}$ | $450\phantom{\rule{0.166667em}{0ex}}\mathsf{\mu}$H |

${C}_{boost}$ | 4.7 mF |

${f}_{SW}$ | 20 kHz |

LVDC bus | |

${C}_{bus}$ | 100 mF |

SST | |

${L}_{\sigma}$ | $200\phantom{\rule{0.166667em}{0ex}}\mathsf{\mu}$H |

Transformer | 230 V/1500 V |

${f}_{SW}$ | 10 kHz |

Catenary | |

${V}_{DC}$ | 1500 V |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Oñederra, O.; Asensio, F.J.; Saldaña, G.; Martín, J.I.S.; Zamora, I.
Wind Energy Harnessing in a Railway Infrastructure: Converter Topology and Control Proposal. *Electronics* **2020**, *9*, 1943.
https://doi.org/10.3390/electronics9111943

**AMA Style**

Oñederra O, Asensio FJ, Saldaña G, Martín JIS, Zamora I.
Wind Energy Harnessing in a Railway Infrastructure: Converter Topology and Control Proposal. *Electronics*. 2020; 9(11):1943.
https://doi.org/10.3390/electronics9111943

**Chicago/Turabian Style**

Oñederra, Oier, Francisco Javier Asensio, Gaizka Saldaña, José Ignacio San Martín, and Inmaculada Zamora.
2020. "Wind Energy Harnessing in a Railway Infrastructure: Converter Topology and Control Proposal" *Electronics* 9, no. 11: 1943.
https://doi.org/10.3390/electronics9111943