Predicting the State of Power of an Iron-Based Li-Ion Battery Pack Including the Constraint of Maximum Operating Temperature
Abstract
:1. Introduction
2. Experimental Platform and Characterization Tests
2.1. Characterizations on B1
2.2. Verification on B2
3. Battery Modeling
3.1. Equivalent Circuit Model
3.2. Thermal Model
3.3. On-Line Parameterization of ECM
4. SoC Estimation and SoP Prediction
4.1. UPF-Based SoC Estimation
4.2. Peak Current Estimation
- First, the peak currents limited by the three constraints on terminal voltage, SoC, and working temperature are estimated;
- Then, the obtained three pairs of peak currents, along with the current limits, are compared and the final peak currents are determined as the most conservative ones;
- With the currents obtained in the preceding step, the corresponding terminal voltages are derived, and thereby the power capabilities can be given.
4.2.1. Peak Current by Voltage Limits
4.2.2. Peak Currents by SoC Limits
4.2.3. Peak Currents by Temperature Limit
4.2.4. Current Capabilities by all the Limits
4.3. SoP Prediction
5. Experimental Results and Analysis
5.1. SoP Prediction on a Fresh Battery at 10 °C
5.2. SoP Prediction on 200-Cycle Aged Battery at 45 °C
5.3. SoP Predicted at Different Temperatures and Aging States
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reddy, M.V.; Mauger, A.; Julien, C.M.; Paolella, A.; Zaghib, K. Brief history of early lithium-battery development. Materials 2020, 13, 1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.V.; Julien, C.M.; Mauger, A.; Zaghib, K. Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: A review. Nanomaterials 2020, 10, 1606. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Feng, F.; Liu, K.; Zhang, L.; Xie, J.; Liu, B. State estimation for advanced battery management: Key challenges and future trends. Renew. Sustain. Energy Rev. 2019, 114, 109334. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wu, J.; Chen, Z. A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter. Appl. Energy 2018, 21, 442–451. [Google Scholar] [CrossRef]
- Dong, G.; Wei, J.; Chen, Z. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries. J. Power Source 2016, 328, 615–626. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, F.; He, H.; Nguyen, T.D. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy 2013, 63, 295–308. [Google Scholar] [CrossRef]
- Duong, T.Q. USABC and PNGV test procedures. J. Power Sources 2000, 89, 244–248. [Google Scholar] [CrossRef]
- Plett, G.L. High-performance battery-pack power estimation using a dynamic cell model. IEEE Trans. Veh. Technol. 2004, 53, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Xiong, R.; He, H.; Li, W.; Aussems, J.E.E. Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries. Appl. Energy 2012, 96, 378–386. [Google Scholar] [CrossRef]
- Xiong, R.; He, H.; Sun, F.; Liu, X.; Liu, Z. Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles. J. Power Sources 2013, 229, 159–169. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery lifetime prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Panchal, S.; Gudlanarva, K.; Tran, M.K.; Fraser, R.; Fowler, M. High reynold’s number turbulent model for micro-channel cold plate using reverse engineering approach for water-cooled battery in electric vehicles. Energies 2020, 13, 1638. [Google Scholar] [CrossRef] [Green Version]
- Panchal, S.; Mathewson, S.; Fraser, R.; Culham, R.; Fowler, M. Measurement of temperature gradient (dt/dy) and temperature response (dt/dt) of a prismatic lithium-ion pouch cell with lifepo4 cathode material. SAE Tech. Pap. 2017. [Google Scholar] [CrossRef]
- Patil, M.S.; Seo, J.H.; Panchal, S.; Jee, S.W.; Lee, M.Y. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. Int. J. Heat Mass Trans. 2020, 155, 119728. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Y.; Yao, K.; He, Z.; Gao, F. Model migration based battery power capability evaluation considering uncertainties of temperature and aging. J. Power Sources 2019, 440, 227141. [Google Scholar] [CrossRef]
- Rao, R.P.; Reddy, M.V.; Adams, S.; Chowdari, B.V.R. Preparation, temperature dependent structural, molecular dynamics simulations studies and electrochemical properties of LiFePO4. Mater. Res. Bull. 2015, 66, 71–75. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. J. Power Sources 2004, 134, 262–276. [Google Scholar] [CrossRef]
- Zhang, C.; Li, K.; Pei, L.; Zhu, C. An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries. J. Power Sources 2015, 283, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Liu, W.; Lin, X.; Xie, Y. A comparative study of control-oriented thermal models for cylindrical Li-ion batteries. IEEE Trans. Transp. Electr. 2019, 5, 1237–1253. [Google Scholar] [CrossRef]
- Gao, L.; Liu, S.; Dougal, R.A. Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Pack Technol. 2002, 25, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Chen, Z.; Zheng, C.; Li, H. A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature. Energy 2019, 185, 847–861. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Y.; Zou, C.; Yao, K.; Xia, Y.; Gao, F. A novel framework for Lithium-ion battery modeling considering uncertainties of temperature and aging. Energy Convers. Manag. 2019, 180, 162–170. [Google Scholar] [CrossRef]
- Xie, J.; Ma, J.; Bai, K. State-of-charge estimators considering temperature effect, hysteresis potential, and thermal evolution for LiFePO4 batteries. Int. J. Energy Res. 2018, 42, 2710–2727. [Google Scholar] [CrossRef]
- He, Y.; Liu, X.; Zhang, C.; Chen, Z. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries. Appl. Energy 2013, 101, 808–814. [Google Scholar] [CrossRef]
- Chang, J.; Chi, M.; Shen, T. Model based state-of-energy estimation for LiFePO4 batteries using unscented particle filter. J. Power Electr. 2020, 20, 624–633. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Waag, W.; Käbitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl. Energy 2013, 102, 885–897. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S.; Zhang, G. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery. Energy Convers. Manag. 2011, 52, 3408–3414. [Google Scholar] [CrossRef]
Temp. (°C) | Aging Cycles | |||||
---|---|---|---|---|---|---|
0 | 200 | 400 | 600 | 800 | ||
(Ah) | 0 | 17.64 | 16.97 | 16.18 | 15.21 | 14.18 |
15 | 18.85 | 18.3 | 17.58 | 16.61 | 15.58 | |
30 | 19.70 | 19.33 | 18.48 | 17.45 | 16.24 | |
45 | 20.73 | 19.88 | 19.15 | 18.30 | 17.03 | |
0 | 0.977 | 0.972 | 0.968 | 0.962 | 0.951 | |
15 | 0.985 | 0.984 | 0.983 | 0.972 | 0.963 | |
30 | 0.991 | 0.991 | 0.989 | 0.982 | 0.971 | |
45 | 0.993 | 0.992 | 0.988 | 0.986 | 0.971 |
Parameter | Formulation |
---|---|
24.84 − 2.39 + 0.058 | |
−51.05 + 5.19 − 0.126 | |
42.05 − 4.32 + 0.107 | |
−13.75 + 1.43 − 0.035 | |
0.574 − 0.055 + 0.0012 | |
11.00 − 1.106 + 0.027 | |
−23.76 + 3.76 − 0.198 + 0.0034 |
Constraint | Value |
---|---|
Voltage (, ) | 21.6 , 15 |
SoC (, ) | 0.9, 0.1 |
Current (, ) | 100 A, −80 A |
Temperature () | 50 °C |
Parameter | Value |
---|---|
Heat capacity () | 988 |
Convection coefficient () | 4.11 |
Effective surface area (pack) () | e−2 |
Mass (pack) () | 3 kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Ma, L.; Zhang, S.; Jiao, D.; Ma, J. Predicting the State of Power of an Iron-Based Li-Ion Battery Pack Including the Constraint of Maximum Operating Temperature. Electronics 2020, 9, 1737. https://doi.org/10.3390/electronics9101737
Xie W, Ma L, Zhang S, Jiao D, Ma J. Predicting the State of Power of an Iron-Based Li-Ion Battery Pack Including the Constraint of Maximum Operating Temperature. Electronics. 2020; 9(10):1737. https://doi.org/10.3390/electronics9101737
Chicago/Turabian StyleXie, Wei, Liyong Ma, Shu Zhang, Daxin Jiao, and Jiachen Ma. 2020. "Predicting the State of Power of an Iron-Based Li-Ion Battery Pack Including the Constraint of Maximum Operating Temperature" Electronics 9, no. 10: 1737. https://doi.org/10.3390/electronics9101737
APA StyleXie, W., Ma, L., Zhang, S., Jiao, D., & Ma, J. (2020). Predicting the State of Power of an Iron-Based Li-Ion Battery Pack Including the Constraint of Maximum Operating Temperature. Electronics, 9(10), 1737. https://doi.org/10.3390/electronics9101737