Radio–Image Transformer: Bridging Radio Modulation Classification and ImageNet Classification
Abstract
:1. Introduction
2. Related Work and Literature Review
3. Definition of the Problem
4. The Proposed Radio Modulation Classification Method
4.1. The Proposed Radio–Image Transformer
4.1.1. Signal Rearrangement Method
4.1.2. Convolution Mapping Method
4.2. The Training Procedure
5. Experiments and Performance Evaluation
5.1. The Experimental Setup
5.1.1. Dataset
- Sig1024
- Sig1024_2
- RealSig
- OFDMSig
5.1.2. Network Models
5.1.3. Training Environment
5.1.4. Traditional Methods for Comparison
5.2. The Experimental Results
5.2.1. Comparison of Training Strategies
5.2.2. Comparison with Traditional Methods
5.2.3. Performance of Different ImageNet Models
5.2.4. Performance with Different Sampling Rates
5.2.5. Performance with Real Measured Data
5.2.6. Performance of OFDM Signal Classification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haykin, S.; Setoodeh, P. Cognitive Radio Networks: The Spectrum Supply Chain Paradigm. IEEE Trans. Cogn. Commun. Netw. 2015, 1, 3–28. [Google Scholar] [CrossRef]
- Yucek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 2009, 11, 116–130. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, S.; Yang, L.; Zhu, J.; Luo, Z.; Hu, J.; Yang, X. Big Data Processing Architecture for Radio Signals Empowered by Deep Learning: Concept, Experiment, Applications and Challenges. IEEE Access 2018, 6, 55907–55922. [Google Scholar] [CrossRef]
- Rajendran, S.; Calvo-Palomino, R.; Fuchs, M.; Van den Bergh, B.; Cordobes, H.; Giustiniano, D.; Pollin, S.; Lenders, V. Electrosense: Open and Big Spectrum Data. IEEE Commun. Mag. 2018, 56, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Ulversoy, T. Software Defined Radio: Challenges and Opportunities. IEEE Commun. Surv. Tutor. 2010, 12, 531–550. [Google Scholar] [CrossRef] [Green Version]
- Emam, A.; Shalaby, M.; Aboelazm, M.A.; Bakr, H.E.A.; Mansour, H.A.A. A Comparative Study between CNN, LSTM, and CLDNN Models in the Context of Radio Modulation Classification. In Proceedings of the 2020 12th International Conference on Electrical Engineering (ICEENG), Cairo, Egypt, 7–9 July 2020. [Google Scholar]
- Kim, S.H.; Kim, C.Y.; Yoo, S.H.; Kim, D.-S. Design of Deep Learning Model for Automatic Modulation Classification in Cognitive Radio Network. J. Korean Inst. Commun. Inf. Ences. 2020, 45, 1364–1372. [Google Scholar]
- Zhu, Z.; Nandi, A.K. Automatic Modulation Classification: Principles, Algorithms and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9781118906491. [Google Scholar]
- Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Commun. 2007, 1, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Swami, A.; Sadler, B.M. Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun. 2000, 48, 416–429. [Google Scholar] [CrossRef]
- Soliman, S.S.; Hsue, S.-Z. Signal classification using statistical moments. IEEE Trans. Commun. 1992, 40, 908–916. [Google Scholar] [CrossRef]
- Grimaldi, D.; Rapuano, S.; Vito, L.D. An Automatic Digital Modulation Classifier for Measurement on Telecommunication Networks. IEEE Trans. Instrum. Meas. 2007, 56, 1711–1720. [Google Scholar] [CrossRef]
- Majhi, S.; Gupta, R.; Xiang, W.; Glisic, S. Hierarchical Hypothesis and Feature-Based Blind Modulation Classification for Linearly Modulated Signals. IEEE Trans. Veh. Technol. 2017, 66, 11057–11069. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. Proc. Int. Conf. Eng. Appl. Neural Netw. 2016, 629, 213–226. [Google Scholar]
- O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-Air Deep Learning Based Radio Signal Classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion Methods for CNN-Based Automatic Modulation Classification. IEEE Access 2019, 7, 66496–66504. [Google Scholar] [CrossRef]
- Rajendran, S.; Meert, W.; Giustiniano, D.; Lenders, V.; Pollin, S. Deep Learning Models for Wireless Signal Classification With Distributed Low-Cost Spectrum Sensors. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y. Modulation Classification Based on Signal Constellation Diagrams and Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 718–727. [Google Scholar] [CrossRef]
- Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A. Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput. 2017, 18, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Czech, D.; Mishra, A.; Inggs, M. A CNN and LSTM-based approach to classifying transient radio frequency interference. Astron. Comput. 2018, 25, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.; Paisana, F.; Arokkiam, J.A.; Zhang, Y.; Doyle, L.; DaSilva, L.A. Spectrum Monitoring for Radar Bands Using Deep Convolutional Neural Networks. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2014, 8689, 818–833. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Christian, S.; Wei, L.; Yang, J.; Pierre, S.; Scott, R.; Dragomir, A.; Dumitru, E.; Vincent, V.; Andrew, R. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Iandola, F.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2017, arXiv:1602.07360. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Models | Parameters | Top-1 Accuracy | Top-5 Accuracy |
---|---|---|---|
ResNet18 | 11689512 | 69.76% | 89.08% |
ResNet101 | 44549160 | 77.37% | 93.56% |
VGG16_bn | 138365992 | 73.37% | 91.50% |
DenseNet121 | 7978856 | 74.65% | 92.17% |
MobileNet_V2 | 3504872 | 71.88% | 90.29% |
ShuffleNet_v2_x1_0 | 2278604 | 69.36% | 88.32% |
MNASNet1_0 | 4383312 | 73.51% | 91.54% |
Methods | Train the Classification Layer | Train the Entire Network |
---|---|---|
Accuracy | 32.30% | 65.99% |
Methods | SRM | Constellation | Time–Frequency | CMM |
---|---|---|---|---|
ResNet18 | 65.99% | 40.27% | 55.79% | 65.49% |
CNNs | ResNet18 | ResNet101 | VGG16_bn |
---|---|---|---|
Accuracy | 65.49% | 66.47% | 65.43% |
DenseNet121 | MobileNet_V2 | ShuffleNet_v2_x1_0 | MNASNet1_0 |
67.47% | 66.63% | 65.06% | 49.27% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Qiu, K.; Zheng, S.; Xuan, Q.; Yang, X. Radio–Image Transformer: Bridging Radio Modulation Classification and ImageNet Classification. Electronics 2020, 9, 1646. https://doi.org/10.3390/electronics9101646
Chen S, Qiu K, Zheng S, Xuan Q, Yang X. Radio–Image Transformer: Bridging Radio Modulation Classification and ImageNet Classification. Electronics. 2020; 9(10):1646. https://doi.org/10.3390/electronics9101646
Chicago/Turabian StyleChen, Shichuan, Kunfeng Qiu, Shilian Zheng, Qi Xuan, and Xiaoniu Yang. 2020. "Radio–Image Transformer: Bridging Radio Modulation Classification and ImageNet Classification" Electronics 9, no. 10: 1646. https://doi.org/10.3390/electronics9101646
APA StyleChen, S., Qiu, K., Zheng, S., Xuan, Q., & Yang, X. (2020). Radio–Image Transformer: Bridging Radio Modulation Classification and ImageNet Classification. Electronics, 9(10), 1646. https://doi.org/10.3390/electronics9101646