A Statistical Approach for the Assessment of Muscle Activation Patterns during Gait in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Acquisition
2.3. Data Analysis
- GM activation signal of all gait cycles, normalized with respect to gait cycle duration, were summed up and divided by the number of corresponding gait cycles per subject, then, the resulting subject specific normalized n-activation patterns were summed up and divided by number of subjects.
- The same procedure was replicated per TA n-activation pattern occurring during the same gait cycle of certain GM n-activation pattern.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mortka, K.; Wiertel-Krawczuk, A.; Lisiński, P. Muscle Activity Detectors—Surface Electromyography in the Evaluation of Abductor Hallucis Muscle. Sensors 2020, 20, 2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türker, H.; Sze, H.; Sözen, H.T.A.H. Surface Electromyography in Sports and Exercise. Electrodiagnosis New Front. Clin. Res. 2013. [Google Scholar] [CrossRef]
- Sutherland, D. The evolution of clinical gait analysis part l: Kinesiological EMG. Gait Posture 2001, 14, 61–70. [Google Scholar] [CrossRef]
- Di Nardo, F.; Agostini, V.; Knaflitz, M.; Mengarelli, A.; Maranesi, E.; Burattini, L.; Fioretti, S. The occurrence frequency: A suitable parameter for the evaluation of the myoelectric activity during walking. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6070–6073. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, P. Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2012, 22, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ying, D.; Rymer, W.Z.; Zhou, P. Robust Muscle Activity Onset Detection Using an Unsupervised Electromyogram Learning Framework. PLoS ONE 2015, 10, e127990. [Google Scholar] [CrossRef]
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Tirosh, O.; Sangeux, M.; Wong, M.; Thomason, P.; Graham, K. Walking speed effects on the lower limb electromyographic variability of healthy children aged 7–16 years. J. Electromyogr. Kinesiol. 2013, 23, 1451–1459. [Google Scholar] [CrossRef]
- Chang, W.N.; Lipton, J.S.; Tsirikos, A.I.; Miller, F. Kinesiological surface electromyography in normal children: Range of normal activity and pattern analysis. J. Electromyogr. Kinesiol. 2007, 17, 437–445. [Google Scholar] [CrossRef]
- Agostini, V.; Nascimbeni, A.; Gaffuri, A.; Imazio, P.; Benedetti, M.G.; Knaflitz, M. Normative EMG activation patterns of school-age children during gait. Gait Posture 2010, 32, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathological Function, 2nd ed.; Slack Inc: Thorofare, NJ, USA, 2010. [Google Scholar]
- Di Nardo, F.; Ghetti, G.; Fioretti, S. Assessment of the activation modalities of gastrocnemius lateralis and tibialis anterior during gait: A statistical analysis. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2013, 23, 1428–1433. [Google Scholar] [CrossRef]
- Di Nardo, F.; Fioretti, S. Statistical analysis of surface electromyographic signal for the assessment of rectus femoris modalities of activation during gait. J. Electromyogr. Kinesiol. 2013, 23, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Maranesi, E.; Mengarelli, A.; Ghetti, G.; Burattini, L.; Fioretti, S. Assessment of the variability of vastii myoelectric activity in young healthy females during walking: A statistical gait analysis. J. Electromyogr. Kinesiol. 2015, 25, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Mengarelli, A.; Gentili, A.; Strazza, A.; Burattini, L.; Fioretti, S.; Di Nardo, F. Co-activation patterns of gastrocnemius and quadriceps femoris in controlling the knee joint during walking. J. Electromyogr. Kinesiol. 2018, 42, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Mengarelli, A.; Maranesi, E.; Burattini, L.; Fioretti, S. Gender differences in the myoelectric activity of lower limb muscles in young healthy subjects during walking. Biomed. Signal Process. Control 2015, 19, 14–22. [Google Scholar] [CrossRef]
- Di Nardo, F.; Strazza, A.; Mengarelli, A.; Cardarelli, S.; Tigrini, A.; Verdini, F.; Nascimbeni, A.; Agostini, V.; Knaflitz, M.; Fioretti, S. EMG-Based Characterization of Walking Asymmetry in Children with Mild Hemiplegic Cerebral Palsy. Biosensors 2019, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Grazia, M.; Knaflitz, M.; Agostini, V.; Bonato, P. Muscle Activation Patterns During Level Walking and Stair Ambulation. Appl. EMG Clin. Sports Med. 2012. [Google Scholar] [CrossRef] [Green Version]
- Conti, M.; Martínez Madrid, N.; Seepold, R.; Orcioni, S. Mobile Networks for Biometric Data Analysis; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Vitečková, S.; Kutilek, P.; Svoboda, Z.; Krupička, R.; Kauler, J.; Szabó, Z. Gait symmetry measures: A review of current and prospective methods. Biomed. Signal Process. Control 2018, 42, 89–100. [Google Scholar] [CrossRef]
- Moevus, A.; Mignotte, M.; De Guise, J.A.; Meunier, J. Evaluating perceptual maps of asymmetries for gait symmetry quantification and pathology detection. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3317–3320. [Google Scholar] [CrossRef] [Green Version]
- Patikas, D.A. EMG Activity in Gait: The Influence of Motor Disorders. In Handbook of Human Motion; Müller, B., Wolf, S.I., Brueggermann, G.P., Deng, Z., McIntosh, A., Miller, F., Selbie, W.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–26. [Google Scholar]
- Bailey, C.A.; Corona, F.; Murgia, M.; Pili, R.; Pau, M.; Côté, J.N. Electromyographical Gait Characteristics in Parkinson’s Disease: Effects of Combined Physical Therapy and Rhythmic Auditory Stimulation. Front. Neurol. 2018, 9. [Google Scholar] [CrossRef]
- Nieuwboer, P.A.; Dom, R.; De Weerdt, W.; Desloovere, K.; Janssens, L.; Stijn, V. Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinson’s disease. Brain 2004, 127, 1650–1660. [Google Scholar] [CrossRef]
- Cioni, M.; Richards, C.L.; Malouin, F.; Bedard, P.J.; Lemieux, R. Characteristics of the electromyographic patterns of lower limb muscles during gait in patients with Parkinson’s disease when OFF and ON L-Dopa treatment. Ital. J. Neurol. Sci. 1997, 18, 195–208. [Google Scholar] [CrossRef]
- Mitoma, H.; Hayashi, R.; Yanagisawa, N.; Tsukagoshi, H. Characteristics of parkinsonian and ataxic gaits: A study using surface electromyograms, angular displacements and floor reaction forces. J. Neurol. Sci. 2000, 174, 22–39. [Google Scholar] [CrossRef]
- Ferrarin, M.; Carpinella, I.; Rabuffetti, M.; Rizzone, M.; Lopiano, L.; Crenna, P. Unilateral and Bilateral Subthalamic Nucleus Stimulation in Parkinson’s Disease: Effects on EMG Signals of Lower Limb Muscles During Walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V.; Zijlstra, W.; Prokop, T.; Berger, W. Leg muscle activation during gait in Parkinson’s disease: Adaptation and interlimb coordination. Electroencephalogr. Clin. Neurophysiol. Mot. Control. 1995, 97, 408–415. [Google Scholar] [CrossRef]
- Dietz, V.; Quintern, J.; Berger, W. Electrophysiological Studies of Gait in Spasticity and Rigidity Evidence that Altered Mechanical Properties of Muscle Contribute to Hyperonia. Brain 1981, 104, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Agostini, V.; Balestra, G.; Knaflitz, M. Segmentation and Classification of Gait Cycles. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Rosati, S.; Agostini, V.; Knaflitz, M.; Balestra, G. Muscle activation patterns during gait: A hierarchical clustering analysis. Biomed. Signal Process. Control 2017, 31, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Agostini, V.; Nascimbeni, A.; Gaffuri, A.; Knaflitz, M. Multiple gait patterns within the same Winters class in children with hemiplegic cerebral palsy. Clin. Biomech. 2015, 30, 908–914. [Google Scholar] [CrossRef] [Green Version]
- Hermens, H.; Freriks, B. The State of the Art on Sensors and Sensor Placement Procedures for Surface Electromyography: A Proposal for Sensor Placement Procedures; Roessingh Research and Development: Enschede, The Netherlands, 1997. [Google Scholar]
- Welcome to SENIAM. Available online: http://www.seniam.org/ (accessed on 16 September 2020).
- Salarian, A.; Russmann, H.; Vingerhoets, F.; Dehollain, C.; Blanc, Y.; Burkhard, P.; Aminian, K. Gait Assessment in Parkinson’s Disease: Toward an Ambulatory System for Long-Term Monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef]
- Liu, J.; Ying, D.; Rymer, W.Z. EMG burst presence probability: A joint time-frequency representation of muscle activity and its application to onset detection. J. Biomech. 2015, 48, 1193–1197. [Google Scholar] [CrossRef]
- Rashid, U.; Niazi, I.K.; Signal, N.E.J.; Farina, D.; Taylor, D. Optimal automatic detection of muscle activation intervals. J. Electromyogr. Kinesiol. 2019, 48, 103–111. [Google Scholar] [CrossRef]
- Bonato, P.; D’Alessio, T.; Knaflitz, M. A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans. Biomed. Eng. 1998, 45, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Agostini, V.; Knaflitz, M. An Algorithm for the Estimation of the Signal-To-Noise Ratio in Surface Myoelectric Signals Generated During Cyclic Movements. IEEE Trans. Biomed. Eng. 2012, 59, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albani, G.; Sandrini, G.; Künig, G.; Martin-Soelch, C.; Mauro, A.; Pignatti, R.; Pacchetti, C.; Dietz, V.; Leenders, K.L. Differences in the EMG pattern of leg muscle activation during locomotion in Parkinson’s disease. Funct. Neurol. 2003, 18, 165–170. [Google Scholar] [PubMed]
- Schmitz, A.; Silder, A.; Heiderscheit, B.; Mahoney, J.; Thelen, D.G. Differences in lower-extremity muscular activation during walking between healthy older and young adults. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2009, 19, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Hortobágyi, T.; DeVita, P. Muscle pre- and coactivity during downward stepping are associated with leg stiffness in aging. J. Electromyogr. Kinesiol. 2000, 10, 117–126. [Google Scholar] [CrossRef]
- Cardarelli, S.; Gentili, A.; Mengarelli, A.; Verdini, F.; Fioretti, S.; Burattini, L.; Di Nardo, F. Ankle Muscles Co-Activation Patterns During Normal Gait: An Amplitude Evaluation. In EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings; Eskola, H., Väisänen, O., Viik, J., Hyttinen, J., Eds.; Springer: Singapore, 2017; Volume 65. [Google Scholar] [CrossRef]
- Lichtwark, G. The role of the tibialis anterior muscle and tendon in absorbing energy during walking. J. Sci. Med. Sport 2014, 18, e129. [Google Scholar] [CrossRef]
- Winter, D.A. The Biomechanics and Motor Control of Human Gait; University of Waterloo Press: Waterloo, ON, Canada, 1987. [Google Scholar]
- Mengarelli, A.; Maranesi, E.; Burattini, L.; Fioretti, S.; Di Nardo, F. Co-contraction activity of ankle muscles during walking: A gender comparison. Biomed. Signal Process. Control 2017, 33, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Krishnan, S. Statistical Analysis of Gait Rhythm in Patients with Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2010, 18, 150–158. [Google Scholar] [CrossRef]
- Khajuria, A.; Joshi, P.; Joshi, D. Comprehensive Statistical Analysis of the Gait Parameters in Neurodegenerative Diseases. Neurophysiology 2018, 50, 38–51. [Google Scholar] [CrossRef]
- Arcolin, I.; Corna, S.; Giardini, M.; Giordano, A.; Nardone, A.; Godi, M. Proposal of a new conceptual gait model for patients with Parkinson’s disease based on factor analysis. Biomed. Eng. Online 2019, 18, 70. [Google Scholar] [CrossRef] [Green Version]
Subject | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Right | TA | X | X | X | X | X | X | X | ||||||||||||
GM | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||
Left | TA | X | X | X | X | X | X | X | X | X | X | X | X | |||||||
GM | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||
N. Strides per leg | 182 | 152 | 179 | 132 | 208 | 64 | 190 | 201 | 194 | 179 | 139 | 48 | 55 | 159 | 203 | 146 | 156 | 170 | 152 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacini Panebianco, G.; Ferrazzoli, D.; Frazzitta, G.; Fonsato, M.; Bisi, M.C.; Fantozzi, S.; Stagni, R. A Statistical Approach for the Assessment of Muscle Activation Patterns during Gait in Parkinson’s Disease. Electronics 2020, 9, 1641. https://doi.org/10.3390/electronics9101641
Pacini Panebianco G, Ferrazzoli D, Frazzitta G, Fonsato M, Bisi MC, Fantozzi S, Stagni R. A Statistical Approach for the Assessment of Muscle Activation Patterns during Gait in Parkinson’s Disease. Electronics. 2020; 9(10):1641. https://doi.org/10.3390/electronics9101641
Chicago/Turabian StylePacini Panebianco, Giulia, Davide Ferrazzoli, Giuseppe Frazzitta, Margherita Fonsato, Maria Cristina Bisi, Silvia Fantozzi, and Rita Stagni. 2020. "A Statistical Approach for the Assessment of Muscle Activation Patterns during Gait in Parkinson’s Disease" Electronics 9, no. 10: 1641. https://doi.org/10.3390/electronics9101641