# Compact Rectifier Circuit Design for Harvesting GSM/900 Ambient Energy

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- To the best of our knowledge, this is the compact RFEH rectifier as compares to state of the art rectifiers at 900 MHz.
- This research targets an energy harvesting rectifier that works over GSM/900 to cover long and remote places suitable for low powered IoT devices and sensor nodes.
- The proposed design can receive an RF input signal at less than −20 dBm and also provides detailed circuit and performance analysis.

## 2. Rectifier Circuit Design and Analysis

#### 2.1. Transmission Line and Input Impedance Matching Network

#### 2.2. Rectifier Design

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Chen, Y.S.; You, J.W. A scalable and multidirectional rectenna system for RF energy harvesting. IEEE Trans. Compon. Packag. Manuf. Technol.
**2018**, 8, 2060–2072. [Google Scholar] [CrossRef] - Pardue, C.A.; Bellaredj, M.L.F.; Davis, A.K.; Swaminathan, M.; Kohl, P.; Fujii, T.; Nakazawa, S. Design and characterization of inductors for self-powered IoT edge devices. IEEE Trans. Compon. Packag. Manuf. Technol.
**2018**, 8, 1263–1271. [Google Scholar] [CrossRef] - Mansour, M.M.; Kanaya, H. Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-Section matching network. IEEE Microw. Wirel. Compon. Lett.
**2018**, 28, 335–337. [Google Scholar] [CrossRef] - Pardue, C.A.; Bellaredj, M.L.F.; Torun, H.M.; Swaminathan, M.; Kohl, P.; Davis, A.K. RF Wireless Power Transfer Using Integrated Inductor. IEEE Trans. Compon. Packag. Manuf. Technol.
**2018**, 9, 913–920. [Google Scholar] [CrossRef] - Awais, Q.; Jin, Y.; Chattha, H.T.; Jamil, M.; Qiang, H.; Khawaja, B.A. A compact rectenna system with high conversion efficiency for wireless energy harvesting. IEEE Access
**2018**, 6, 35857–35866. [Google Scholar] [CrossRef] - Wong, S.W.; Sun, G.H.; Zhu, L.; Chen, Z.N.; Chu, Q.X. Integration of Wireless Coil and Bluetooth Antenna for High Charging and Radiation Efficiencies. IEEE Trans. Compon. Packag. Manuf. Technol.
**2018**, 8, 1292–1299. [Google Scholar] [CrossRef] - Mansour, M.M.; Kanaya, H. Novel L-Slot Matching Circuit Integrated with Circularly Polarized Rectenna for Wireless Energy Harvesting. Electronics
**2019**, 8, 651. [Google Scholar] [CrossRef] [Green Version] - Liu, J.; Zhang, X.Y. Compact triple-band rectifier for ambient RF energy harvesting application. IEEE Access
**2018**, 6, 19018–19024. [Google Scholar] [CrossRef] - Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans. Antennas Propag.
**2016**, 64, 3160–3171. [Google Scholar] [CrossRef] [Green Version] - Huang, F.J.; Yo, T.C.; Lee, C.M.; Luo, C.H. Design of circular polarization antenna with harmonic suppression for rectenna application. IEEE Antennas Wirel. Propag. Lett.
**2012**, 11, 592–595. [Google Scholar] [CrossRef] - Palazzi, V.; Kalialakis, C.; Alimenti, F.; Mezzanotte, P.; Roselli, L.; Collado, A.; Georgiadis, A. Design of a ultra-compact low-power rectenna in paper substrate for energy harvesting in the Wi-Fi band. In Proceedings of the 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, 5–6 May 2016; pp. 1–4. [Google Scholar]
- Falkenstein, E.; Roberg, M.; Popovic, Z. Low-power wireless power delivery. IEEE Trans. Microw. Theory Tech.
**2012**, 60, 2277–2286. [Google Scholar] [CrossRef] - Niotaki, K.; Georgiadis, A.; Collado, A.; Vardakas, J.S. Dual-band resistance compression networks for improved rectifier performance. IEEE Trans. Microw. Theory Tech.
**2014**, 62, 3512–3521. [Google Scholar] [CrossRef] [Green Version] - Adam, I.; Yasin, M.N.M.; Rahim, H.A.; Soh, P.J.; Abdulmalek, M.F. A compact dual-band rectenna for ambient RF energy harvesting. Microw. Opt. Technol. Lett.
**2018**, 60, 2740–2748. [Google Scholar] [CrossRef] - Masotti, D.; Costanzo, A.; Francia, P.; Filippi, M.; Romani, A. A load-modulated rectifier for RF micropower harvesting with start-up strategies. IEEE Trans. Microw. Theory Tech.
**2014**, 62, 994–1004. [Google Scholar] [CrossRef] - Lu, J.J.; Yang, X.X.; Mei, H.; Tan, C. A four-band rectifier with adaptive power for electromagnetic energy harvesting. IEEE Microw. Wirel. Compon. Lett.
**2016**, 26, 819–821. [Google Scholar] [CrossRef] - Hsu, C.Y.; Lin, S.C.; Tsai, Z.M. Quadband rectifier using resonant matching networks for enhanced harvesting capability. IEEE Microw. Wirel. Compon. Lett.
**2017**, 27, 669–671. [Google Scholar] [CrossRef] - Vuong, T.P.; Verdier, J.; Allard, B.; Benech, P. Design and Measurement of 3D Flexible Antenna Diversity for Ambient RF Energy Scavenging in Indoor Scenarios. IEEE Access
**2019**, 7, 17033–17044. [Google Scholar] - Papotto, G.; Carrara, F.; Palmisano, G. A 90-nm CMOS threshold-compensated RF energy harvester. IEEE J. Solid-State Circuits
**2011**, 46, 1985–1997. [Google Scholar] [CrossRef] - Singh, N.; Kanaujia, B.; Beg, M.; Mainuddin; Kumar, S.; Choi, H.C.; Kim, K.W. Low Profile Multiband Rectenna for Efficient Energy Harvesting at Microwave Frequencies. Int. J. Electron.
**2019**, 106, 2057–2071. [Google Scholar] [CrossRef] - Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Hagerty, J.A.; Helmbrecht, F.B.; McCalpin, W.H.; Zane, R.; Popovic, Z.B. Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. Microw. Theory Tech.
**2004**, 52, 1014–1024. [Google Scholar] [CrossRef] - Tissier, J.; Latrach, M. A 900/1800 MHz dual-band high-efficiency rectenna. Microw. Opt. Technol. Lett.
**2019**, 61, 1278–1283. [Google Scholar] [CrossRef] - Niotaki, K.; Collado, A.; Georgiadis, A.; Kim, S.; Tentzeris, M.M. Solar/electromagnetic energy harvesting and wireless power transmission. Proc. IEEE
**2014**, 102, 1712–1722. [Google Scholar] [CrossRef] [Green Version]

**Figure 4.**Simulated reflection coefficient of the rectifier for: (

**a**) Inductance ($L1$) (

**b**) Capacitance ($C1$).

**Figure 5.**(

**a**) Simulated efficiency sweep against load terminal (${R}_{L}$) at various input power (${P}_{in}$). (

**b**) Simulated and measured reflection coefficient of the proposed rectifier for −20 dBm input power.

**Figure 6.**Simulated and measured: (

**a**) Output DC voltage sweep against the input power (

**b**) PCE sweep over an input power ${P}_{in}$ at 900 MHz.

Ref | Electrical Size (λ_{g}) | η_{PCE} (%) @P_{in} (dBm) | Frequency (GHz) | Diode |
---|---|---|---|---|

[10] | 1.03${\lambda}_{g}$ × 1.03${\lambda}_{g}$ | 37.8%@-1.5 | 2.45 | HSMS286C |

[11] | 0.76${\lambda}_{g}$ × 0.84${\lambda}_{g}$ | 28%@-15 | 2.45 | HSMS2850 |

[13] | 3.86${\lambda}_{g}$ × 4.89${\lambda}_{g}$ | 50%@NA | 1.8/2.1 | SMS7630 |

[14] | 0.88${\lambda}_{g}$ × 0.57${\lambda}_{g}$ | 24%@-20 | 1.8/2.5 | HSMS2850 |

[16] | 0.34${\lambda}_{g}$ × 0.21${\lambda}_{g}$ | (47.8, 37, 46.7, 42)% @(14, 12, 13, 12) | 0.87/1.27/ 2.02/2.38 | HSMS2860 |

[17] | 0.38${\lambda}_{g}$ × 0.22${\lambda}_{g}$ | (38, 37, 18, 12.5)% @5 | 1.3/1.7/ 2.4/3.6 | SMS7630 |

This work | 0.31${\lambda}_{g}$ × 0.05${\lambda}_{g}$ | 50.2%@2 | 0.90 | HSMS2850 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Muhammad, S.; Jiat Tiang, J.; Kin Wong, S.; Iqbal, A.; Alibakhshikenari, M.; Limiti, E.
Compact Rectifier Circuit Design for Harvesting GSM/900 Ambient Energy. *Electronics* **2020**, *9*, 1614.
https://doi.org/10.3390/electronics9101614

**AMA Style**

Muhammad S, Jiat Tiang J, Kin Wong S, Iqbal A, Alibakhshikenari M, Limiti E.
Compact Rectifier Circuit Design for Harvesting GSM/900 Ambient Energy. *Electronics*. 2020; 9(10):1614.
https://doi.org/10.3390/electronics9101614

**Chicago/Turabian Style**

Muhammad, Surajo, Jun Jiat Tiang, Sew Kin Wong, Amjad Iqbal, Mohammad Alibakhshikenari, and Ernesto Limiti.
2020. "Compact Rectifier Circuit Design for Harvesting GSM/900 Ambient Energy" *Electronics* 9, no. 10: 1614.
https://doi.org/10.3390/electronics9101614