A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network
Abstract
:1. Introduction
2. Prognostic: Definition and Relationship
2.1. PHM Definition
2.2. Precursor Signal
- -
- Collector-emitter voltage (Vce).
- -
- Collector-current (Ic).
- -
- Gate-emitter voltage (Vge).
- -
- Thermal and electrical resistance (turn ON (Ton) and turn OFF (Toff)).
3. Methods
3.1. Proposed Prognostic Approach
3.2. Feedforward Neural Network (FFNN)
3.3. Correlation Dimension Estimator
Algorithm 1 CDE |
1. find the k nearest neighbors for all features data points. |
K is the number of neighbors that are stored |
Space distance matrix D |
2. extract an index of the non-zero value D |
3. for i = 1, 2, …, N (where N is the features data cycles) |
Do |
Compute the distance |
where V is one’s vector |
Compute the number of elements within the median value S1 |
Compute the number of elements within the maximum value S2 |
End for |
Dim E |
3.4. Principal Component Analysis
4. Experimental Results
4.1. Raw Data of IGBT Device (Data Collection)
4.2. Feature Extraction
4.3. Features Reduction
4.4. Online Prognostic
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tavner, P. How are we going to make offshore wind farms more reliable? In Proceedings of the Supergen Wind 2011 General Assembly, Durham, UK, 20 March 2011. [Google Scholar]
- Council, G.W.E. Global Wind Statistics 2017; Global Wind Energy Council: Brussels, Belgium, 2018. [Google Scholar]
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 2011, 47, 1441–1451. [Google Scholar] [CrossRef]
- Ismail, A.; Saidi, L.; Sayadi, M. Wind turbine power converter fault diagnosis using DC-link voltage time-frequency analysis. Wind Eng. 2019, 43, 329–343. [Google Scholar] [CrossRef]
- Pecht, M.; Kang, M. Introduction to PHM. In Prognostics and Health Management of Electronics: Fundamentals. Machine Learning, and the Internet of Things, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Lu, B.; Sharma, S.K. A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl. 2009, 45, 1770–1777. [Google Scholar]
- Kim, N.H.; An, D.; Choi, J.H. Prognostics and Health Management of Engineering Systems: An Introduction; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Niu, G. Data-Driven Technology for Engineering Systems Health Management; Springer: Beijing, China, 2017. [Google Scholar]
- Haque, M.S.; Choi, S.; Baek, J. Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Trans. Ind. Electron. 2017, 65, 2693–2703. [Google Scholar] [CrossRef]
- Saha, B.; Celaya, J.R.; Wysocki, P.F.; Goebel, K.F. Towards prognostics for electronics components. In Proceedings of the 2009 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–7. [Google Scholar]
- Celaya, J.; Saxena, A.; Saha, S.; Goebel, K.F. Prognostics of power MOSFETs under thermal stress accelerated aging using data-driven and model-based methodologies. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, Montreal, QC, Canada, 25–29 September 2011. [Google Scholar]
- Hong, S.; Zhou, Z.; Lv, C.; Guo, H. Prognosis for insulated gate bipolar transistor based on Gaussian process regression. In Proceedings of the 2013 IEEE Conference on Prognostics and Health Management, Gaithersburg, MD, USA, 24–27 June 2013; pp. 1–5. [Google Scholar]
- Alghassi, A.; Perinpanayagam, S.; Samie, M. Stochastic RUL calculation enhanced with TDNN-based IGBT failure modeling. IEEE Trans. Reliab. 2015, 65, 558–573. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Ge, X.; Xie, D.; Zhang, Y.; Yao, B.; Dai, J.; Yang, F. An Aging-Degree Evaluation Method for IGBT Bond Wire with Online Multivariate Monitoring. Energies 2019, 12, 3962. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.H.; Heydarzadeh, M.; Dusmez, S.; Li, X.; Kamath, A.S.; Akin, B. Lifetime estimation of discrete IGBT devices based on Gaussian process. IEEE Trans. Ind. Appl. 2017, 54, 395–403. [Google Scholar] [CrossRef]
- Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. Remaining useful lifetime prediction of thermally aged power insulated gate bipolar transistor based on Gaussian process regression. Trans. Inst. Meas. Control 2020, 42, 6004–6009. [Google Scholar] [CrossRef]
- Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. Gaussian process regression remaining useful lifetime prediction of thermally aged power IGBT. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 6004–6009. [Google Scholar]
- Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. Remaining useful life estimation for thermally aged power insulated gate bipolar transistors based on a modified maximum likelihood estimator. Int. Trans. Electr. Energy Syst. 2020, 30, e12358. [Google Scholar] [CrossRef]
- Wu, H.; Ye, C.; Zhang, Y.; Nie, J.; Kuang, Y.; Li, Z. Remaining Useful Life Prediction of an IGBT Module in Electric Vehicles Statistical Analysis. Symmetry 2020, 12, 1325. [Google Scholar] [CrossRef]
- Fang, X.; Lin, S.; Huang, X.; Lin, F.; Yang, Z.; Igarashi, S. A review of data-driven prognostic for IGBT remaining useful life. Chin. J. Electr. Eng. 2018, 4, 73–79. [Google Scholar]
- Saidi, L.; Ali, J.B.; Benbouzid, M.; Bechhofer, E. An integrated wind turbine failures prognostic approach implementing Kalman smoother with confidence bounds. Appl. Acoust. 2018, 138, 199–208. [Google Scholar] [CrossRef]
- Oh, H.; Han, B.; McCluskey, P.; Han, C.; Youn, B.D. Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review. IEEE Trans. Power Electron. 2014, 30, 2413–2426. [Google Scholar] [CrossRef]
- Sonnenfeld, G.; Goebel, K.; Celaya, J.R. An agile accelerated aging, characterization and scenario simulation system for gate controlled power transistors. In Proceedings of the 2008 IEEE AUTOTESTCON, Salt Lake City, UT, USA, 8–11 September 2008; pp. 208–215. [Google Scholar]
- Astigarraga, D.; Ibanez, F.M.; Galarza, A.; Echeverria, J.M.; Unanue, I.; Baraldi, P.; Zio, E. Analysis of the results of accelerated aging tests in insulated gate bipolar transistors. IEEE Trans. Power Electron. 2015, 31, 7953–7962. [Google Scholar] [CrossRef]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Saxena, A.; Celaya, J.; Saha, B.; Saha, S.; Goebel, K. On applying the prognostic performance metrics. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, San Diego, CA, USA, 27 September–1 October 2009. [Google Scholar]
- Celaya, J.R.; Saxena, A.; Wysocki, P.; Saha, S.; Goebel, K. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure. NASA Ames Prognostics Data Repository; NASA Ames Research Center: Moffett Field, CA, USA, 2009. [Google Scholar]
- Ahsan, M.; Hon, S.T.; Batunlu, C.; Albarbar, A. Reliability assessment of IGBT through modelling and experimental testing. IEEE Access. 2020, 8, 39561–39573. [Google Scholar] [CrossRef]
- Patil, N.; Celaya, J.; Das, D.; Goebel, K.; Pecht, M. Precursor parameter identification for insulated gate bipolar transistor (IGBT) prognostics. IEEE Trans. Reliab. 2009, 58, 271–276. [Google Scholar] [CrossRef]
Features | Symbols | Expressions |
---|---|---|
Root-Mean-Square | RMS | |
Mean | M | |
Standard Deviation | STD | |
Kurtosis | Ku | |
Skewness | Sk | |
Crest Factor | CF | |
Peak to Peak | PtP | |
Energy | En | |
Entropy | Ent |
Metrics | Devices | Averages | |||
---|---|---|---|---|---|
IGBT 1 | IGBT 2 | IGBT 3 | IGBT4 | ||
R2 | 0.77 | 0.76 | 0.728 | 0.72 | 0.74 |
NRMSE | 0.3 | 0.3 | 0.32 | 0.18 | 0.27 |
A | 54.4% | 60.6% | 53.45% | 73.23% | 60.42% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network. Electronics 2020, 9, 1571. https://doi.org/10.3390/electronics9101571
Ismail A, Saidi L, Sayadi M, Benbouzid M. A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network. Electronics. 2020; 9(10):1571. https://doi.org/10.3390/electronics9101571
Chicago/Turabian StyleIsmail, Adla, Lotfi Saidi, Mounir Sayadi, and Mohamed Benbouzid. 2020. "A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network" Electronics 9, no. 10: 1571. https://doi.org/10.3390/electronics9101571
APA StyleIsmail, A., Saidi, L., Sayadi, M., & Benbouzid, M. (2020). A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network. Electronics, 9(10), 1571. https://doi.org/10.3390/electronics9101571