Magnetic-Free Nonreciprocal Multifunction Device Based on Switched Delay Lines
Abstract
1. Introduction
2. Principle of the Device
2.1. Gyrator
2.2. Circulator
2.3. Isolator
3. Simulation Verification of the Device
3.1. Circulator
3.2. Isolator
4. The Experiments of the Magnetic-Free Nonreciprocal Device
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dong, H.; Smith, J.R.; Young, J.L. A Wide-Band, High Isolation UHF Lumped-Element Ferrite Circulator. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 294–296. [Google Scholar] [CrossRef]
- Zeng, L.; Tong, C.E.; Blundell, R.; Grimes, P.K.; Paine, S.N. A Low-Loss Edge-Mode Isolator With Improved Bandwidth for Cryogenic Operation. IEEE Trans. Microw. Theory Tech. 2018, 66, 1–7. [Google Scholar] [CrossRef]
- Liberal, I.; Engheta, N. Erratum: Near-zero refractive index photonics. Nat. Photonics 2017, 11, 264. [Google Scholar] [CrossRef]
- Pacheco-Peña, V.; Beruete, M.; Rodríguez-Ulibarri, P.; Engheta, N. On the performance of an ENZ-based sensor using transmission line theory and effective medium approach. New J. Phys. 2019, 21, 043056. [Google Scholar] [CrossRef]
- Wang, S.; Lee, C.H.; Wu, Y.B. Fully integrated 10-GHz active circulator and quasi-circulator using bridged-T networks in standard CMOS. IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 3184–3192. [Google Scholar] [CrossRef]
- Mung, S.W.Y.; Chan, W.S. Active Three-Way Circulator Using Transistor Feedback Network. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 476–478. [Google Scholar] [CrossRef]
- Popa, B.I.; Cummer, S.A. Nonreciprocal active metamaterials. Phys. Rev. B 2012, 85, 205101. [Google Scholar] [CrossRef]
- Estep, N.A.; Sounas, D.L.; Alu, A. Magnetless Microwave Circulators Based on Spatiotemporally Modulated Rings of Coupled Resonators. IEEE Trans. Microw. Theory Tech. 2016, 64, 502–518. [Google Scholar] [CrossRef]
- Kord, A.; Sounas, D.L.; Alu, A. Pseudo-Linear Time-Invariant Magnetless Circulators Based on Differential Spatiotemporal Modulation of Resonant Junctions. IEEE Trans. Microw. Theory Tech. 2018, 66, 2731–2745. [Google Scholar] [CrossRef]
- Qin, S.; Xu, Q.; Wang, Y.E. Nonreciprocal Components With Distributedly Modulated Capacitors. IEEE Trans. Microw. Theory Tech. 2014, 62, 2260–2272. [Google Scholar] [CrossRef]
- Reiskarimian, N.; Zhou, J.; Chuang, T.H.; Krishnaswamy, H. Analysis and Design of Two-Port N-Path Band-Pass Filters with Embedded Phase Shifting. Circuits and Systems II: Express Briefs. IEEE Trans. 2016, 63, 728–732. [Google Scholar]
- Reiskarimian, N.; Zhou, J.; Krishnaswamy, H. A CMOS Passive LPTV Nonmagnetic Circulator and Its Application in a Full-Duplex Receiver. IEEE J. Solid State Circuits 2017, 52, 1358–1372. [Google Scholar] [CrossRef]
- Dinc, T.; Nagulu, A.; Krishnaswamy, H. A Millimeter-Wave Non-Magnetic Passive SOI CMOS Circulator Based on Spatio-Temporal Conductivity Modulation. IEEE J. Solid State Circuits 2017, 52, 3276–3292. [Google Scholar] [CrossRef]
- Dinc, T.; Tymchenko, M.; Nagulu, A.; Sounas, D.; Alu, A.; Krishnaswamy, H. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity. Nat. Commun. 2017, 8, 795. [Google Scholar] [CrossRef] [PubMed]
- Nagulu, A.; Dinc, T.; Xiao, Z.; Tymchenko, M.; Sounas, D.L.; Alù, A.; Krishnaswamy, H. Nonreciprocal Components Based on Switched Transmission Lines. IEEE Trans. Microw. Theory Tech. 2018, 66, 4706–4725. [Google Scholar]
- Lu, R.; Krol, J.; Gao, L.; Gong, S. A Frequency Independent Framework for Synthesis of Programmable Non-reciprocal Networks. Sci. Rep. 2018, 8, 14655. [Google Scholar] [CrossRef] [PubMed]
- Fengchuan, W.; Yuejun, Z.; Fang, Y.; Yunqi, F. Magnetic-Free Isolators Based on Time-Varying Transmission Lines. Electronics 2019, 8, 684. [Google Scholar]
















© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zheng, Y.; Fu, Y. Magnetic-Free Nonreciprocal Multifunction Device Based on Switched Delay Lines. Electronics 2019, 8, 862. https://doi.org/10.3390/electronics8080862
Wu F, Zheng Y, Fu Y. Magnetic-Free Nonreciprocal Multifunction Device Based on Switched Delay Lines. Electronics. 2019; 8(8):862. https://doi.org/10.3390/electronics8080862
Chicago/Turabian StyleWu, Fengchuan, Yuejun Zheng, and Yunqi Fu. 2019. "Magnetic-Free Nonreciprocal Multifunction Device Based on Switched Delay Lines" Electronics 8, no. 8: 862. https://doi.org/10.3390/electronics8080862
APA StyleWu, F., Zheng, Y., & Fu, Y. (2019). Magnetic-Free Nonreciprocal Multifunction Device Based on Switched Delay Lines. Electronics, 8(8), 862. https://doi.org/10.3390/electronics8080862
