Coherently Driven and Superdirective Antennas
Abstract
:1. Introduction
2. Coherently Enhanced Wireless Power Transfer
3. Superdirective Antennas
4. Conclusions
Funding
Conflicts of Interest
References
- Balanis, C.A. Antenna Theory: Analysis and Design; J. Wiley: New York, NY, USA; Brisbane, Australia, 1997; ISBN 9781118585733. [Google Scholar]
- Handbook of Microstrip Antennas, Volume 1; James, J.R.; Hall, P.S. (Eds.) IET, The Institution of Engineering and Technology, Michael Faraday House: Stevenage, UK, 1989; ISBN 9780863417597. [Google Scholar]
- Rahman, M.; NagshvarianJahromi, M.; Mirjavadi, S.; Hamouda, A. Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal Wireless Communication and UWB Applications. Electronics 2019, 8, 158. [Google Scholar] [CrossRef]
- Rahman, M.; NaghshvarianJahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Resonator Based Switching Technique between Ultra Wide Band (UWB) and Single/Dual Continuously Tunable-Notch Behaviors in UWB Radar for Wireless Vital Signs Monitoring. Sensors 2018, 18, 3330. [Google Scholar] [CrossRef] [PubMed]
- Rahmat-Samii, Y. Reflector Antennas. In Antenna Handbook; Springer: Boston, MA, USA, 1988; pp. 949–1072. [Google Scholar]
- Kwok Wa Leung; Eng Hock Lim; Xiao Sheng Fang Dielectric Resonator Antennas: From the Basic to the Aesthetic. Proc. IEEE 2012, 100, 2181–2193. [CrossRef]
- Yaduvanshi, R.S.; Parthasarathy, H. Rectangular Dielectric Resonator Antennas; Springer: New Delhi, India, 2016; ISBN 978-81-322-2499-0. [Google Scholar]
- Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Agio, M.; Alù, A. Optical antennas. Opt. Antennas 2011, 9781107014, 1–455. [Google Scholar]
- Krasnok, A.E.; Miroshnichenko, A.E.; Belov, P.A.; Kivshar, Y.S. All-dielectric optical nanoantennas. Opt. Express 2012, 20, 20599. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Maksymov, I.S.; Denisyuk, A.I.; Belov, P.A.; Miroshnichenko, A.E.; Simovskii, C.R.; Kivshar, Y.S. Optical nanoantennas. Uspekhi Fiz. Nauk 2013, 183, 561–589. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Maloshtan, A.; Chigrin, D.N.; Kivshar, Y.S.; Belov, P.A. Enhanced emission extraction and selective excitation of NV centers with all-dielectric nanoantennas. Laser Photonics Rev. 2015, 9, 385–391. [Google Scholar] [CrossRef]
- Li, S.V.; Baranov, D.G.; Krasnok, A.E.; Belov, P.A. All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef]
- Wang, M.; Krasnok, A.; Zhang, T.; Scarabelli, L.; Liu, H.; Wu, Z.; Liz-Marzán, L.M.; Terrones, M.; Alù, A.; Zheng, Y. Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature. Adv. Mater. 2018, 30, 1705779. [Google Scholar] [CrossRef]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljacic, M. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Belov, P.; Kapitanova, P. Wireless power transfer inspired by the modern trends in electromagnetics. Appl. Phys. Rev. 2017, 4, 021102. [Google Scholar] [CrossRef]
- Hansen, R.C. Electrically Small, Superdirective, and Superconducting Antennas; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 9780470041048. [Google Scholar]
- Di Francia, G.T. Super-gain antennas and optical resolving power. Nuovo Cim. 1952, 9, 426–438. [Google Scholar] [CrossRef]
- Wong, A.M.H.; Eleftheriades, G.V. Adaptation of Schelkunoff’s Superdirective Antenna Theory for the Realization of Superoscillatory Antenna Arrays. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 315–318. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, W.; Xu, R. A design of superdirective endfire array in HF band. 2004 Asia-Pacific Radio Sci. Conf. Proc. 2004, 74–77. [Google Scholar] [CrossRef]
- Lugo, J.M.; Goes, J.D.A.; Louzir, A.; Minard, P.; Tong, D.L.H.; Person, C. Design, Optimization and Characterization of a Superdirective Antenna Array. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; 2013; pp. 3609–3612. [Google Scholar]
- Altshuler, E.E.; O’Donnell, T.H.; Yaghjian, A.D.; Best, S.R. A monopole superdirective array. IEEE Trans. Antennas Propag. 2005, 53, 2653–2661. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Simovski, C.R.; Belov, P.A.; Kivshar, Y.S. Superdirective dielectric nanoantennas. Nanoscale 2014, 6, 7354–7361. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Filonov, D.S.; Simovski, C.R.; Kivshar, Y.S.; Belov, P.A. Experimental demonstration of superdirective dielectric antenna. Appl. Phys. Lett. 2014, 104, 133502. [Google Scholar] [CrossRef]
- Krasnok, A.; Baranov, D.G.; Generalov, A.; Li, S.; Alù, A. Coherently Enhanced Wireless Power Transfer. Phys. Rev. Lett. 2018, 120, 143901. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhang, J.; Lei, B.; Ma, H.; Xie, W.; Hu, H. Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 2014, 22, 16178. [Google Scholar] [CrossRef]
- Chong, Y.D.; Ge, L.; Cao, H.; Stone, A.D. Coherent Perfect Absorbers: Time-Reversed Lasers. Phys. Rev. Lett. 2010, 105, 053901. [Google Scholar] [CrossRef] [Green Version]
- Wan, W.; Chong, Y.; Ge, L.; Noh, H.; Stone, A.D.; Cao, H. Time-reversed lasing and interferometric control of absorption. Science 2011, 331, 889–892. [Google Scholar] [CrossRef]
- Zhang, J.; MacDonald, K.F.; Zheludev, N.I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 2012, 1, e18. [Google Scholar] [CrossRef]
- Baranov, D.G.; Krasnok, A.; Shegai, T.; Alù, A.; Chong, Y. Coherent perfect absorbers: Linear control of light with light. Nat. Rev. Mater. 2017, 2, 17064. [Google Scholar] [CrossRef]
- Pichler, K.; Kühmayer, M.; Böhm, J.; Brandstötter, A.; Ambichl, P.; Kuhl, U.; Rotter, S. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 2019, 567, 351–355. [Google Scholar] [CrossRef]
- Potton, R.J. Reciprocity in optics. Reports Prog. Phys. 2004, 67, 717–754. [Google Scholar] [CrossRef]
- Baldacci, L.; Zanotto, S.; Biasiol, G.; Sorba, L.; Tredicucci, A. Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation. Opt. Express 2015, 23, 9202. [Google Scholar] [CrossRef]
- Wang, K.X.; Yu, Z.; Sandhu, S.; Fan, S. Fundamental bounds on decay rates in asymmetric single-mode optical resonators. Opt. Lett. 2013, 38, 100. [Google Scholar] [CrossRef]
- Fan, S.; Suh, W.; Joannopoulos, J.D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569. [Google Scholar] [CrossRef]
- Haus, H. Waves and Fields in Optoelectronics; Prentice Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Balanis, C.A. Antenna Theory: A Review. Proc. IEEE 1992, 80, 7–23. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Wireless at the nanoscale: Optical interconnects using matched nanoantennas. Phys. Rev. Lett. 2010, 104, 213902. [Google Scholar] [CrossRef]
- Ludwig, A.; Sarris, C.D.; Eleftheriades, G.V. Metascreen-based superdirective antenna in the optical frequency regime. Phys. Rev. Lett. 2012, 109, 223901. [Google Scholar] [CrossRef]
- Monticone, F.; Argyropoulos, C.; Alù, A. Optical antennas: Controlling electromagnetic scattering, radiation, and emission at the nanoscale. IEEE Antennas Propag. Mag. 2017, 59, 43–61. [Google Scholar] [CrossRef]
- Skigin, D.C.; Veremey, V.V.; Mittra, R. Superdirective radiation from finite gratings of rectangular grooves. IEEE Trans. Antennas Propag. 1999, 47. [Google Scholar] [CrossRef]
- Kim, O.S.; Pivnenko, S.; Breinbjerg, O. Superdirective magnetic dipole array as a first-order probe for spherical near-field antenna measurements. IEEE Trans. Antennas Propag. 2012, 60, 4670–4676. [Google Scholar] [CrossRef]
- Veremey, V. Superdirective Antennas with Passive Reflectors. IEEE Antennas Propag. Mag. 1995, 37, 16–27. [Google Scholar] [CrossRef]
- Monticone, F.; Alu, A. Metamaterial, plasmonic and nanophotonic devices. Reports Prog. Phys. 2017, 80. [Google Scholar] [CrossRef]
- Alu, A.; Engheta, N. Enhanced directivity from subwavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials. IEEE Trans. Antennas Propag. 2007, 55, 3027–3039. [Google Scholar] [CrossRef]
- Shamonina, E.; Solymar, L. Superdirectivity by virtue of coupling between meta-atoms. In Proceedings of the 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Talence, France, 16–21 September 2013; 2013; 2, pp. 97–99. [Google Scholar]
- Ourir, A.; Burokur, S.N.; Yahiaoui, R.; de Lustrac, A. Directive metamaterial-based subwavelength resonant cavity antennas - Applications for beam steering. Comptes Rendus Phys. 2009, 10, 414–422. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Dawson, D.C.; Jacob, M.M.; Kanar, T.; Kim, S.; Long, J.; Quarfoth, R.G. Experimental Validation of Performance Limits and Design Guidelines for Small Antennas. IEEE Trans. Antennas Propag. 2012, 60, 8–19. [Google Scholar] [CrossRef]
- Belov, P.A.; Kapitanova, P.V.; Slobozhanyuk, A.P.; Krasnok, A.E.; Filonov, D.S.; Nenasheva, E.A.; Kivshar, Y.S. Experimental verification of the concept of all-dielectric nanoantennas. Appl. Phys. Lett. 2012, 100, 201113. [Google Scholar] [Green Version]
- Krasnok, A.; Glybovski, S.; Petrov, M.; Makarov, S.; Savelev, R.; Belov, P.; Simovski, C.; Kivshar, Y. Demonstration of the enhanced Purcell factor in all-dielectric structures. Appl. Phys. Lett. 2016, 108, 211105. [Google Scholar] [CrossRef] [Green Version]
- Krasnok, A.E.; Miroshnichenko, A.E.; Belov, P.A.; Kivshar, Y.S. Huygens optical elements and Yagi—Uda nanoantennas based on dielectric nanoparticles. JETP Lett. 2011, 94, 593–598. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Slobozhanyuk, A.P.; Simovski, C.R.; Tretyakov, S.A.; Poddubny, A.N.; Miroshnichenko, A.E.; Kivshar, Y.S.; Belov, P.A. An antenna model for the Purcell effect. Sci. Rep. 2015, 5, 12956. [Google Scholar] [CrossRef] [Green Version]
- Chattaraj, S.; Madhukar, A. Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: toward on-chip integrated nanophotonics. J. Opt. Soc. Am. B 2016, 33, 2414. [Google Scholar] [CrossRef]
- Mahmoud, K.R.; Hussein, M.; Hameed, M.F.O.; Obayya, S.S.A. Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J. Opt. Soc. Am. B 2017, 34, 2041. [Google Scholar] [CrossRef]
- Filonov, D.S.; Slobozhanyuk, A.P.; Krasnok, A.E.; Belov, P.A.; Nenasheva, E.A.; Hopkins, B.; Miroshnichenko, A.E.; Kivshar, Y.S. Near-field mapping of Fano resonances in all-dielectric oligomers. Appl. Phys. Lett. 2014, 104, 021104. [Google Scholar] [CrossRef]
- Rybin, M.V.; Kapitanova, P.V.; Filonov, D.S.; Slobozhanyuk, A.P.; Belov, P.A.; Kivshar, Y.S.; Limonov, M.F. Fano resonances in antennas: General control over radiation patterns. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 1–8. [Google Scholar] [CrossRef]
- Mongia, R.K.; Ittipiboon, A. Theoretical and experimental investigations on rectangular dielectric resonator antennas. IEEE Trans. Antennas Propag. 1997, 45, 1348–1356. [Google Scholar] [CrossRef]
- Mongia, R.K.; Bhartia, P. Dielectric resonator antennas—a review and general design relations for resonant frequency and bandwidth. Int. J. Microw. Millimeter-Wave Comput. Eng. 1994, 4, 230–247. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Seidel, A.; Luk’Yanchuk, B.S.; Chichkov, B.N. Optical response features of Si-nanoparticle arrays. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 45404. [Google Scholar] [CrossRef] [Green Version]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Fu, Y.H.; Zhang, J.; Lukyanchukl, B. Magnetic light. Sci. Rep. 2012, 2, 492. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Ziolkowski, R.W. Metamaterial-Inspired, Electrically Small Huygens Sources. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 501–505. [Google Scholar] [CrossRef]
- Ziolkowski, R.W. Low profile, broadside radiating, electrically small huygens source antennas. IEEE Access 2015, 3, 2644–2651. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasnok, A. Coherently Driven and Superdirective Antennas. Electronics 2019, 8, 845. https://doi.org/10.3390/electronics8080845
Krasnok A. Coherently Driven and Superdirective Antennas. Electronics. 2019; 8(8):845. https://doi.org/10.3390/electronics8080845
Chicago/Turabian StyleKrasnok, Alex. 2019. "Coherently Driven and Superdirective Antennas" Electronics 8, no. 8: 845. https://doi.org/10.3390/electronics8080845
APA StyleKrasnok, A. (2019). Coherently Driven and Superdirective Antennas. Electronics, 8(8), 845. https://doi.org/10.3390/electronics8080845