# Indoor 3-D RT Radio Wave Propagation Prediction Method: PL and RSSI Modeling Validation by Measurement at 4.5 GHz

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Measurement Environment and Experiment Procedures

## 3. Hardware Specifications and Measurement Setup

## 4. Simulation Server Specifications and Parameter Configuration

## 5. Proposed Ray Tracing Method

- Step I: 3-D Layout design and scenario creation.
- Step II: 3-D ray emission with higher angle difference dimension based on the scenario.
- Step III: Tracing of rays for successful directions by calculation.
- Step IV: Specification of successful directions at nearby forward direction.
- Step V: Specification of successful directions at nearby backward direction.
- Step VI: Definition of wider directions 3-D RL faced on Steps III to V.
- Step VII: Ray tracing at more successful ray directions.

#### 5.1. Workflow of Proposed Method and SBRT Method

#### 5.2. Complexity Analysis of the Proposed Method

## 6. Ray Tracing Modeling Calculations

_{n}is the total distance the ray travels.

_{total}is the adjacent summation of every ray, as given by Equation (2).

_{rn}) is dependent on the Rx antenna type and the polarization. Assuming ideal and linear antennas and matched Rx, we write V

_{rn}as Equation (4).

## 7. Validation of Ray Tracing Modeling Results

## 8. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ai, Y.; Cheffena, M.; Li, Q. Power delay profile analysis and modeling of industrial indoor channels. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–5. [Google Scholar]
- Andersen, J.B.; Chee, K.L.; Jacob, M.; Pedersen, G.F.; Kurner, T. Reverberation and Absorption in an Aircraft Cabin With the Impact of Passengers. IEEE Trans. Antennas Propag.
**2012**, 60, 2472–2480. [Google Scholar] [CrossRef][Green Version] - Andersen, J.; Rappaport, T.; Yoshida, S. Propagation measurements and models for wireless communications channels. IEEE Commun. Mag.
**1995**, 33, 42–49. [Google Scholar] [CrossRef] - Mathar, R.; Reyer, M.; Schmeink, M. A Cube Oriented Ray Launching Algorithm for 3D Urban Field Strength Prediction. In Proceedings of the IEEE International Conference on Communications, Glasgow, UK, 24–28 June 2007; pp. 5034–5039. [Google Scholar]
- Ji, Z.; Li, B.-H.; Wang, H.-X.; Chen, H.-Y.; Sarkar, T. Efficient ray-tracing methods for propagation prediction for indoor wireless communications. IEEE Antennas Propag. Mag.
**2001**, 43, 41–49. [Google Scholar] - Yun, Z.; Iskander, M.; Zhang, Z. Complex-Wall Effect on Propagation Characteristics and MIMO Capacities for an Indoor Wireless Communication Environment. IEEE Trans. Antennas Propag.
**2004**, 52, 914–922. [Google Scholar] [CrossRef] - Suzuki, Y.; Omiya, M. Computer simulation for a site-specific modeling of indoor radio wave propagation. In Proceedings of the IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 123–126. [Google Scholar] [CrossRef]
- Bhuvaneshwari, A.; Hemalatha, R.; Satyasavithri, T. Path loss prediction analysis by ray tracing approach for NLOS indoor propagation. In Proceedings of the International Conference on Signal. Processing and Communication Engineering Systems, Guntur, India, 2–3 January 2015; pp. 486–491. [Google Scholar]
- Shirai, H.; Sato, R.; Otoi, K. Electromagnetic Wave Propagation Estimation by 3-D SBR Method. In Proceedings of the International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 17–21 September 2007; pp. 129–132. [Google Scholar]
- Chao-han, T.; Dan, S.; Yuqi, S.; You-gang, G. The Application of an Improved SBR Algorithm in Outdoor Environment. In Proceedings of the 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), Hangzhou, China, 4–7 November 2015. [Google Scholar]
- Flores, S.J.; Mayorgas, L.F.; Jimenez, F.A. Reception Algorithms for Ray Launching Modeling of Indoor Propagation. In Proceedings of the IEEE Radio and Wireless Conference, Colorado Springs, CO, USA, 9–12 August 1998. [Google Scholar]
- Zakharov, P.N.; Dudov, R.A.; Mikhailov, E.V.; Korolev, A.F.; Sukhorukov, A.P. Finite integration technique capabilities for indoor propagation prediction. Proceedings of Loughborough Antennas & Propagation Conference, Loughborough, UK, 16–17 November 2009; pp. 369–372. [Google Scholar]
- Huit, T.; Mohammed, A. Assessment of multipath propagation for a 2.4 GHz short-range wireless communication system. In Proceedings of the IEEE 65th Vehicular Technology Conference, Dublin, Ireland, 22–25 April 2007; pp. 544–548. [Google Scholar]
- Lee, J.W.H.; Lai, A.K.Y. FDTD analysis of indoor radio propagation. IEEE Antennas Propag. Soc. Int. Symp.
**1998**, 3, 1664–1667. [Google Scholar] - Nagy, L. Indoor propagation modeling for short range devices. In Proceedings of the Second European Antennas and Propagation, Edinburgh, UK, 11–16 November 2007; pp. 1–6. [Google Scholar]
- Wang, Y.; Safavi-Naeini, S.; Chaudhuri, S.K. A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation. IEEE Trans. Antennas Propag.
**2000**, 48, 743–754. [Google Scholar] [CrossRef] - Plets, D.; Joseph, W.; Vanhecke, K.; Martens, L. Exposure Optimization in Indoor Wireless Networks by Heuristic Network Planning. Prog. Electromagn. Res.
**2013**, 139, 445–478. [Google Scholar] [CrossRef] - Azpilicueta, L.; Rawat, M.; Rawat, K.; Ghannouchi, F.M.; Falcone, F. A Ray Launching-Neural Network Approach for Radio Wave Propagation Analysis in Complex Indoor Environments. IEEE Trans. Antennas Propag.
**2014**, 62, 2777–2786. [Google Scholar] [CrossRef] - Shi, D.; Tang, X.; Wang, C. The acceleration of the shooting and bouncing ray tracing method on GPUs. In Proceedings of the XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, 19–26 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Azpilicueta, L.; Rawat, M.; Rawat, K.; Ghannouchi, F.M.; Falcone, F. Convergence analysis in deterministic 3D ray launching radio channel estimation in complex environments. Appl. Comput. Electromagn. Soc. J.
**2014**, 29, 256–271. [Google Scholar] - Granda, F.L.; Azpilicueta, L.; Agilar, D.; Vargas, C. 3D ray launching simulation of urban vehicle to infrastructure radio propagation links. Congr. Cienc. Tecnol.
**2018**, 13, 113–116. [Google Scholar] [CrossRef] - Lostanlen, B.; Kürner, T. Ray Tracing Modeling. In LTE Advanced and Next Generation Wireless Networks: Channel Modeling and Propagatio; Wiley: Hoboken, NJ, USA, 2012; pp. 271–291. [Google Scholar]
- Chen, S.-H.; Jeng, S.-K. An SBR/image approach for radio wave propagation in indoor environments with metallic furniture. IEEE Trans. Antennas Propag.
**1997**, 45, 98–106. [Google Scholar] [CrossRef] - Durgin, G.; Patwari, N.; Rappaport, T.S. An advanced 3D ray launching method for wireless propagation prediction. In Proceedings of the IEEE 47th Vehicular Technology Conference. Technology in Motion, Phoenix, AZ, USA, 4–7 May 1997; Volume 2, pp. 785–789. [Google Scholar]
- Lee, B.S.; Nix, A.R.; McGeehan, J.P. A spatio temporal ray launching propagation model for UMTS picoand microcellular environments. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference, Rhodes, Greece, 6–9 May 2001; Volume 1, pp. 367–371. [Google Scholar]
- Lee, B.S.; Nix, A.R.; McGeehan, J.P. Indoor space time propagation modeling using a ray launching technique. In Proceedings of the Eleventh International Conference on Antennas and Propagation, Manchester, UK, 17–20 April 2001; Volume 1, pp. 279–283. [Google Scholar]
- Stavrou, S.; Saunders, S.R. Review of constitutive parameters of building materials. In Proceedings of the Antennas and Propagation Twelfth International Conference, Exeter, UK, 31 March–3 April 2007. [Google Scholar]
- ITU-R WP3K Propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz. Draft revision of recommendation ITU-R P.1238. 1999. Available online: https://www.itu.int/rec/R-REC-P.1238 (accessed on 15 March 2019).
- Seidel, S.Y.; Rappaport, T.S. Site-specific propagation prediction for wireless in-building personal communication system design. IEEE Trans. Veh. Technol.
**1994**, 43, 879–891. [Google Scholar] [CrossRef] - Whitteker, J.H. Measurements of path loss at 910 MHz for proposed microcell urban mobile systems. IEEE Trans. Veh. Technol.
**1998**, 37, 125–129. [Google Scholar] [CrossRef] - Mohtashami, V.; Shishegar, A.A. Effects of geometrical uncertainties on ray tracing results for site-specific indoor propagation modeling. In Proceedings of the IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Torino, Italy, 9–13 September 2013. [Google Scholar]
- Remcom. Wireless InSite Reference Manual, ver. 2.7.1, Commercial SW User-Manual; Remcom Inc.: State College, PA, USA, 2014; Available online: https://cdn.thomasnet.com/ccp/30280960/29435.pdf (accessed on 15 March 2019).
- ITU-R. P.2040, Effects of Building Materials and Structures on Radio Wave Propagation above about 100 MHz; Technical report; Electronic Publication: Geneva, Switzerland, 2015; Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2040-1-201507-I!!PDF-E.pdf (accessed on 15 January 2019).
- ITU-R. P.2040, Effects of Building Materials and Structures on Radio Wave propagation above about 100 MHz; International Telecommunication Union Radio Communication Sector: Geneva, Switzerland, 2013; Available online: https://www.itu.int/rec/R-REC-P.2040-0-201309-S/en (accessed on 15 January 2019).
- Correia, L.M.; Frances, P.O. Estimation of materials characteristics from power measurements at 60 GHz. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks—Catching the Mobile Future, Hague, The Netherlands, 18–23 September 1994; pp. 510–513. [Google Scholar]
- Lott, M.; Forkel, I. A multi-wall-and-floor model for indoor radio propagation. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference, Rhodes, Greece, 6–9 May 2001; pp. 464–468. [Google Scholar]
- Hossain, F.; Geok, T.K.; Rahman, T.A.; Hindia, M.N.; Dimyati, K.; Abdaziz, A. Indoor Millimeter-Wave Propagation Prediction by Measurement and Ray Tracing Simulation at 38 GHz. Symmetry
**2018**, 10, 464. [Google Scholar] [CrossRef] - Geok, T.K.; Hossain, F.; Kamaruddin, M.N.; Rahman, N.Z.A.; Thiagarajah, S.; Chiat, A.T.W.; Liew, C.P. A Comprehensive Review of Efficient Ray-Tracing Techniques for Wireless Communication. Int. J. Commun. Antenna Propag.
**2018**, 8, 123–136. [Google Scholar] [CrossRef] - Geok, T.K.; Hossain, F.; Chiat, A.T.W. A novel 3D ray launching technique for radio propagation prediction in indoor environments. PLoS ONE
**2018**, 13. [Google Scholar] [CrossRef] [PubMed] - Hossain, F.; Geok, T.K.; Rahman, T.A.; Hindia, M.N.; Dimyati, K.; Tso, C.P.; Kamaruddin, M.N. Smart 3-D RT Method: Indoor Radio Wave Propagation Modeling at 28 GHz. Symmetry
**2018**, 11, 510. [Google Scholar] [CrossRef] - Hong, Q.; Zhang, J.; Zheng, H.; Li, H.; Hu, H.; Zhang, B.; Lai, Z.; Zhang, J. The Impact of Antenna Height on 3D Channel: A Ray Launching Based Analysis. Electronics
**2018**, 7, 2. [Google Scholar] [CrossRef] - Hossain, F.; Geok, T.K.; Rahman, T.A.; Hindia, M.N.; Dimyati, K.; Ahmed, S.; Tso, C.P.; Abd Rahman, N.Z. An Efficient 3-D Ray Tracing Method: Prediction of Indoor Radio Propagation at 28 GHz in 5G Network. Electronics
**2019**, 8, 286. [Google Scholar] [CrossRef]

Item | Value/Specification |
---|---|

Waveguide | WR28 |

Material | Copper |

Output | A Type: FBP320, C Type: 2.92mm-F or 2.4mm-F |

Size (mm) W × H × L | A Type: 40.5 × 32 × 70, C Type: 40.5 × 32 × 95 |

Weight (kg) | A Type: 0.05, C Type 0.10 |

Item | Value |
---|---|

Operational Frequency (GHz) | 4.5 |

Base-Station Transmit Power (dBm) | 25 |

Base-Station Horn Antenna Gain (dBi) | 10.0 |

Mobile-Station Omni Antenna Gain (dBi) | 3 |

Base-Station Height (m) | 2 |

Mobile-Station Height (m) | 1.5 |

Mobile Station ID | Measurement PL (dB) | SBRT Method PL (dB) | Proposed Method PL (dB) |
---|---|---|---|

Rx1 | 55.5 | 47.29 | 47.54 |

Rx2 | 55.3 | 51.56 | 52.60 |

Rx3 | 55.2 | 56.40 | 53.14 |

Rx4 | 55.8 | 58.33 | 57.08 |

Rx5 | 55.8 | 57.25 | 58.86 |

Rx6 | 55.2 | 60.32 | 57.53 |

Rx7 | 55.3 | 61.69 | 60.91 |

Rx8 | 55.3 | 60.69 | 62.68 |

Rx9 | 55.3 | 61.42 | 63.58 |

Rx10 | 55.6 | 57.43 | 61.67 |

Rx13 | 65.2 | 67.37 | 66.59 |

Rx15 | 65.1 | 59.31 | 60.49 |

Rx18 | 65.6 | 68.92 | 60.03 |

Rx19 | 65.6 | 60.19 | 56.27 |

Rx20 | 65.7 | 67.94 | 62.35 |

Rx21 | 65.5 | 57.19 | 69.13 |

Rx24 | 62.7 | 71.46 | 71.46 |

Rx28 | 62.5 | 38.45 | 69.10 |

Rx33 | 59.6 | 53.80 | 51.63 |

Rx34 | 59.6 | 44.59 | 49.44 |

Rx35 | 59.5 | 52.84 | 52.20 |

Rx38 | 59.4 | 56.95 | 57.32 |

Rx39 | 59.4 | 53.09 | 53.09 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hossain, F.; Kim Geok, T.; Abd Rahman, T.; Nour Hindia, M.; Dimyati, K.; Ahmed, S.; Tso, C.P.; Abdaziz, A.; Lim, W.; Mahmud, A.;
et al. Indoor 3-D RT Radio Wave Propagation Prediction Method: PL and RSSI Modeling Validation by Measurement at 4.5 GHz. *Electronics* **2019**, *8*, 750.
https://doi.org/10.3390/electronics8070750

**AMA Style**

Hossain F, Kim Geok T, Abd Rahman T, Nour Hindia M, Dimyati K, Ahmed S, Tso CP, Abdaziz A, Lim W, Mahmud A,
et al. Indoor 3-D RT Radio Wave Propagation Prediction Method: PL and RSSI Modeling Validation by Measurement at 4.5 GHz. *Electronics*. 2019; 8(7):750.
https://doi.org/10.3390/electronics8070750

**Chicago/Turabian Style**

Hossain, Ferdous, Tan Kim Geok, Tharek Abd Rahman, Mohammad Nour Hindia, Kaharudin Dimyati, Sharif Ahmed, C. P. Tso, Azlan Abdaziz, W. Lim, Azwan Mahmud,
and et al. 2019. "Indoor 3-D RT Radio Wave Propagation Prediction Method: PL and RSSI Modeling Validation by Measurement at 4.5 GHz" *Electronics* 8, no. 7: 750.
https://doi.org/10.3390/electronics8070750