A Segmentation-Cooperated Pansharpening Method Using Local Adaptive Spectral Modulation
Abstract
:1. Introduction
2. Model for the Pansharpening Problem
2.1. Detail Image Estimation
2.2. Injection Coefficient Construction
2.3. Construction of Spectral Modulation Coefficient
3. Proposed Method
3.1. LASM Coefficient for Pansharpening
3.1.1. LASM Coefficient Construction
Algorithm 1 Generating LASM coefficient | |
Input: Upscaled image and detail image PAN | |
Output: LASM coefficient matrix | |
Begin | |
Generate a bank of filters shaped on the MTF of sensor | |
Extract the spatial details of MS image | |
Segment into groups by k-means algorithm | |
fordo | |
for do | |
Calculate the LASM coefficient for each connected component group as | |
end for Gather in | |
end for | |
Gather in | |
end |
3.1.2. Performance Test of LASM
3.2. Cooperation between Pansharpening and Segmentation
3.2.1. Cooperation with Segmentation Using K-Means
- Set the initial value , then use the random selection algorithm to select the initial focal point among all the pixels. Then use the k-means algorithm to cluster the MS image into groups according to the spectral similarity measurement, and the PAN image is segmented according to MS segments.
- The PAN detail image can be obtained by Equations (3) and (4). According to Equations (9) and (10), the MS detail image can be extracted. Construct the LASM coefficients according to Equations (13) and (14). The local injection coefficient matrix is obtained by Equation (6).
- Calculate fusion image by Equation (2). The difference between the upscaled MS image and the smoothed fusion image [29] is calculated as
- , . Repeat steps 1–4, and select the optimal value of with the minimum difference and output the fusion image.
Algorithm 2 Pansharpening algorithm based on cooperation with segmentation | |
Input: Original MS and PAN images, range of segments [3, 9] | |
Output: Fused image | |
Begin | |
Interpolate to the size of , yielding | |
Extract the PAN detail image , in which | |
fordo | |
Obtain connected component groups of by k-means algorithm | |
for do | |
for do | |
Compute injection gain coefficient for each group as | |
end for | |
Injection coefficients matrix | |
Calculate LASM coefficient through Algorithm 1 | |
Calculate fusion image | |
end for | |
Compute smoothed fused image as , in which is a mean filter | |
Compute the difference | |
end for | |
Select optimal segments with minimum difference | |
Compute final fusion result | |
end |
3.2.2. Performance Test of Cooperation with Segmentation
4. Experimental Results and Comparisons
4.1. Data Sets
4.2. Quality Indices
4.3. Experiments on Degraded Data
4.4. Experiments on Real Data
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, C.; Zhang, H.Y.; Gao, C.G.; Jiang, C. A remote sensing image fusion method based on the analysis sparse model. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 439–453. [Google Scholar] [CrossRef]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Selva, M. Twenty-five years of pansharpening: A critical review and new developments. In Signal and Image Processing for Remote Sensing, 2nd ed.; Routledge: New York, NY, USA; Boca Raton, FL, USA, 2012; pp. 533–548. [Google Scholar]
- Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Carper, W.J.; Lillesand, T.M.; Kiefer, P.W. The use of intensity-hue-saturation transformation for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Chavez, P.S.; Kwarteng, A.Y. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6,011,875 A, 4 January 2000. [Google Scholar]
- Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 228–236. [Google Scholar] [CrossRef]
- Shensa, M.J. The discrete wavelet transform: Wedding the à trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. IEEE Commun. Lett. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Nencini, F.; Garzelli, A.; Baronti, S.; Alparone, L. Remote sensing image fusion using the curvelet transform. Inf. Fusion 2007, 8, 143–156. [Google Scholar] [CrossRef]
- Cunha, A.L.; Zhou, J.P.; Do, M.N. The non-subsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 2006, 15, 3089–3101. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Barducci, A.; Baronti, S.; Pippi, I. Multispectral fusion of multisensor image data by the generalized Laplacian pyramid. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Hamburg, Germany, 28 June–2 July 1999; pp. 1183–1185. [Google Scholar]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Fasbender, D.; Radoux, J.; Bogaert, P. Bayesian data fusion for adaptable image pansharpening. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1847–1857. [Google Scholar] [CrossRef]
- Zhang, H.K.; Huang, B. A new look at image fusion methods from a bayesian perspective. Remote Sens. 2015, 7, 6828–6861. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. A new pansharpening algorithm based on total variation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 318–322. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Ghahremani, M.; Ghassemian, H.A. Compressed-Sensing-based pan-sharpening method for spectral distortion reduction. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2194–2206. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.P.; Wang, Z.F. A general framework for image fusion based on multiscale transform and sparse representation. Inf. Fusion 2015, 24, 147–164. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Mura, M.D.; Licciardi, G.; Chanussot, J. Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Geosci. Remote Sens. Lett. 2013, 11, 930–934. [Google Scholar] [CrossRef]
- Mura, M.D.; Vivone, G.; Restaino, R.; Chanussot, J. Context-adaptive pansharpening based on binary partition tree segmentation. In Proceedings of the International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 3924–3928. [Google Scholar]
- Restaino, R.; Vivone, G.; Dalla, M.M.; Chanussot, J. Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans. Image Process. 2016, 25, 2882–2895. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Lotti, F.; Selva, M. A comparison between global and context-adaptive pansharpening of multispectral images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 302–306. [Google Scholar] [CrossRef]
- Wang, H.X.; Jiang, W.S.; Lei, C.Q.; Qin, S.L.; Wang, J.L. A robust image fusion method based on local spectral and spatial correlation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 454–458. [Google Scholar] [CrossRef]
- Garzelli, A. Pansharpening of multispectral images based on nonlocal parameter optimization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2096–2107. [Google Scholar] [CrossRef]
- Restaino, R.; Mura, M.D.; Vivone, G.; Chanussot, J. Context-adaptive pansharpening based on image segmentation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 753–766. [Google Scholar] [CrossRef]
- Xu, Q.Z.; Zhang, Y.; Li, B.; Ding, L. Pansharpening using regression of classified MS and Pan images to reduce color distortion. IEEE Geosci. Remote Sens. Lett. 2015, 12, 28–32. [Google Scholar]
- Alparone, L.; Baronti, S.; Garzelli, A. Assessment of image fusion algorithms based on noncritically decimated pyramids and wavelets. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Sydney, Australia, 9–13 July 2001; pp. 852–854. [Google Scholar]
- Zhukov, B.S.; Oertel, D.; Lanzl, F.; Reinhäckel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Zhou, X.R.; Liu, J.; Liu, S.G.; Cao, L.; Zhou, Q.M.; Huang, H.W. A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation. ISPRS J. Photogramm. Remote Sens. 2014, 88, 16–27. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Huang, S.Y.; Tang, Y.J.; Wan, W.G. Pansharpening for Multiband Images With Adaptive Spectral–Intensity Modulation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 9, 3196–3208. [Google Scholar] [CrossRef]
- Choi, J.; Yu, K.Y.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309. [Google Scholar] [CrossRef]
- Chen, R.Y.; Zheng, C.; Shen, L.Z.; Li, G.Q.; Tan, L.N. Cooperation between fusion and segmentation for multisource image. Acta Electron. Sin. 2015, 43, 1994–2000. [Google Scholar]
- Salazar, A.; Igual, J.; Safont, G.; Vergara, L.; Vidal, A. Image applications of agglomerative clustering using mixtures of non-Gaussian distributions. In Proceedings of the 2015 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015; pp. 459–463. [Google Scholar]
- Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. A global quality measurement of pan-sharpened multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 313–317. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm. In Proceedings of the Summaries of the Third Annual JPL Airborne Geoscience Workshop, Boulder, CO, USA, 1–5 June 1992; pp. 147–149. [Google Scholar]
- Yang, Y.; Wu, L.; Huang, S.Y.; Wan, W.G.; Que, Y. Remote sensing image fusion based on adaptively weighted joint detail injection. IEEE Access 2018, 6, 6849–6864. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal. Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef]
- Zhang, L.P.; Shen, H.F. Progress and future of remote sensing data fusion. J. Remote Sens. 2016, 20, 1050–1061. [Google Scholar]
Pansharpening Methods | Performance Indices | |||||
---|---|---|---|---|---|---|
CC | SSIM | SAM | RMSE | ERGAS | UIQI | |
Proposed method with SM [32] | 0.9150 | 0.7997 | 6.6977 | 22.0090 | 4.8603 | 0.8897 |
Proposed method without LASM | 0.9396 | 0.8342 | 5.8355 | 17.3958 | 3.9040 | 0.9185 |
Proposed method with LASM | 0.9398 | 0.8345 | 5.8292 | 17.4075 | 3.8822 | 0.9190 |
Quality Indices | Pansharpening Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
ATWT | GS | MTF-GLP-CBD | BDSD | MF-HG | GSA-BPT | GSA-HA | Proposed | |
CC | 0.9368 | 0.9358 | 0.8778 | 0.9373 | 0.9357 | 0.9334 | 0.9359 | 0.9398 |
SSIM | 0.8283 | 0.8085 | 0.7299 | 0.8222 | 0.8318 | 0.8113 | 0.8244 | 0.8345 |
SAM | 6.0425 | 6.0129 | 8.8873 | 6.806 | 5.7723 | 7.0064 | 7.3112 | 5.8292 |
RMSE | 17.7293 | 19.7887 | 30.1107 | 18.3741 | 18.2025 | 19.4402 | 19.3590 | 17.4075 |
ERGAS | 3.992 | 4.5528 | 6.8347 | 4.1927 | 4.1183 | 4.5577 | 4.3275 | 3.8822 |
UIQI | 0.91505 | 0.88046 | 0.8257 | 0.91248 | 0.91306 | 0.904 | 0.9126 | 0.9190 |
Quality Indices | Pansharpening Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
ATWT | GS | MTF-GLP-CBD | BDSD | MF-HG | GSA-BPT | GSA-HA | Proposed | |
CC | 0.9243 | 0.8912 | 0.8879 | 0.8766 | 0.9281 | 0.8960 | 0.9152 | 0.9301 |
SSIM | 0.8119 | 0.8142 | 0.7019 | 0.7560 | 0.8185 | 0.7099 | 0.7673 | 0.8279 |
SAM | 7.3188 | 6.2933 | 9.7456 | 8.0442 | 6.4970 | 8.4747 | 11.2664 | 6.9827 |
RMSE | 24.8773 | 24.961 | 38.8924 | 30.8421 | 25.2616 | 36.3645 | 29.7974 | 23.5914 |
ERGAS | 7.7099 | 7.6853 | 12.0453 | 9.4242 | 8.025 | 11.1851 | 9.1582 | 7.2349 |
UIQI | 0.9020 | 0.8770 | 0.8160 | 0.8505 | 0.9016 | 0.8322 | 0.8748 | 0.9103 |
Quality Indices | Pansharpening Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
ATWT | GS | MTF-GLP-CBD | BDSD | MF-HG | GSA-BPT | GSA-HA | Proposed | |
0.0140 | 0.0202 | 0.0161 | 0.0351 | 0.0253 | 0.0404 | 0.0200 | 0.0136 | |
0.0307 | 0.0416 | 0.0840 | 0.0308 | 0.0551 | 0.0341 | 0.0290 | 0.0394 | |
QNR | 0.9558 | 0.9390 | 0.9012 | 0.9351 | 0.9210 | 0.9269 | 0.9516 | 0.9475 |
Quality Indices | Pansharpening Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
ATWT | GS | MTF-GLP-CBD | BDSD | MF-HG | GSA-BPT | GSA-HA | Proposed | |
0.0854 | 0.0778 | 0.0848 | 0.0353 | 0.0807 | 0.0368 | 0.0341 | 0.0306 | |
0.0688 | 0.1248 | 0.0523 | 0.0280 | 0.0587 | 0.0404 | 0.0414 | 0.0209 | |
QNR | 0.8516 | 0.8070 | 0.8673 | 0.9377 | 0.8653 | 0.9243 | 0.9259 | 0.9491 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Wu, L.; Qian, K. A Segmentation-Cooperated Pansharpening Method Using Local Adaptive Spectral Modulation. Electronics 2019, 8, 685. https://doi.org/10.3390/electronics8060685
Jiao J, Wu L, Qian K. A Segmentation-Cooperated Pansharpening Method Using Local Adaptive Spectral Modulation. Electronics. 2019; 8(6):685. https://doi.org/10.3390/electronics8060685
Chicago/Turabian StyleJiao, Jiao, Lingda Wu, and Kechang Qian. 2019. "A Segmentation-Cooperated Pansharpening Method Using Local Adaptive Spectral Modulation" Electronics 8, no. 6: 685. https://doi.org/10.3390/electronics8060685
APA StyleJiao, J., Wu, L., & Qian, K. (2019). A Segmentation-Cooperated Pansharpening Method Using Local Adaptive Spectral Modulation. Electronics, 8(6), 685. https://doi.org/10.3390/electronics8060685