Variable Sampling Rate based Active Disturbance Control for a Marine Diesel Engine
Abstract
:1. Introduction
- The variable sampling rate based ADRC is designed for marine engine speed control.
- The stability of the variable sampling rate ESO is analyzed and the parameters tuning is discussed for the variable sampling rate ADRC based engine speed controller.
- To demonstrate the control effects of the proposed method, abundant simulations are carried out on the CA based engine model by using the HIL system where a real ECU is used.
2. Engine Model Description
2.1. The General MVEM
2.2. The Modified MVEM by CA Resolved Method
2.3. The Comparisons Between the Proposed Engine Model and the MVEM
3. Controller Design
3.1. The Variable Simpling Rate ADRC for Engine Speed Control
3.2. Stability Analysis of the Variable Sampling Rate based ESO
3.3. Parameters Design
4. Evaluation of the Variable Sampling Rate based ADRC Controller for Engine Speed Control by HIL System
4.1. The Comparative Controllers
4.2. The Design of Control Parameters for Controllers
4.3. The Control Performance
4.3.1. The Influence of Discretization Methods on the Control Effect
4.3.2. The Speed Tracking Ability
4.3.3. The Attenuating Disturbance Ability
4.3.4. The Robustness towards Model Uncertainties
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, Y.B.; Li, W.Y.; Yu, S.W.; Han, X.; Yuan, Y.B.; Wang, Z.P.; Ma, X.Z. Diesel engine torsional vibration control coupling with speed control system. Mech. Syst. Signal Process. 2017, 94, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Ahmed, Q.; Rizzoni, G. Nonlinear robust control of marine diesel engine. J. Mar. Eng. Technol. 2017, 16, 1–10. [Google Scholar] [CrossRef]
- Radan, D.; Sørensen, A.J.; Johansen, T.A. Inertial control of marine engines and propellers. IFAC Proc. Vol. 2007, 40, 323–328. [Google Scholar] [CrossRef]
- Lynch, C.; Hagras, H.; Callaghan, V. Using uncertainty bounds in the design of an embedded real-time type-2 neuro-fuzzy speed controller for marine diesel engines. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 16–21 July 2006; pp. 1446–1453. [Google Scholar]
- Yuan, Y.; Zhang, M.; Chen, Y.; Mao, X. Multi-sliding surface control for the speed regulation system of ship diesel engines. Trans. Inst. Meas. Control 2018, 40, 22–34. [Google Scholar] [CrossRef]
- Bondarenko, O.; Kashiwagi, M. Statistical consideration of propeller load fluctuation at racing condition in irregular waves. J. Mar. Sci. Technol. 2011, 16, 402–410. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, A.; Qin, D.; Lim, T.C.; Shu, R.; Lin, X.; Meng, F. A coupling dynamics analysis method for a multistage planetary gear system. Mech. Mach. Theory 2017, 110, 27–49. [Google Scholar] [CrossRef]
- Kang, E.; Hong, S.; Sunwoo, M. Idle speed controller based on active disturbance rejection control in diesel engines. Int. J. Automot. Technol. 2016, 17, 937–945. [Google Scholar] [CrossRef]
- Nielsen, K.V.; Blanke, M.; Eriksson, L.; Vejlgaard-Laursen, M. Marine diesel engine control to meet emission requirements and maintain maneuverability. Control Eng. Pract. 2018, 76, 12–21. [Google Scholar] [CrossRef]
- Xiros, N.I. PID marine engine speed regulation under full load conditions for sensitivity H∞-norm specifications against propeller disturbance. J. Mar. Eng. Technol. 2004, 3, 3–11. [Google Scholar] [CrossRef]
- Papalambrou, G.; Kyrtatos, N.P. robust control of marine diesel engine equipped with power-take-in system. IFAC Proc. Vol. 2006, 39, 591–596. [Google Scholar] [CrossRef]
- Wang, R.Z.; Li, X.M.; Liu, Y.F.; Fu, W.J.; Liu, S.; Ma, X.Z. Multiple model predictive functional control for marine diesel engine. Math. Probl. Eng. 2018. [Google Scholar] [CrossRef]
- Broomhead, T.; Manzie, C.; Hield, P.; Shekhar, R.; Brear, M. Economic model predictive control and applications for diesel generators. IEEE Trans. Control Syst. Technol. 2017, 25, 388–400. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, J. Speed governor design based on fuzzy self-tuning PID method for marine diesel engine. In Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering, Shenzhen, China, 19–20 September 2015; Volume 39, pp. 1397–1402. [Google Scholar]
- Farouk, N.; Sheng, L.; Said, L. Speed control system on marine diesel engine based on a self-tuning fuzzy PID controller. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 686–690. [Google Scholar]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Li, S.H.; Xia, C.J.; Zhou, X. Disturbance rejection control method for permanent magnet synchronous motor speed-regulation system. Mechatronics 2012, 22, 706–714. [Google Scholar] [CrossRef]
- Chang, X.; Li, Y.; Zhang, W.; Wang, N.; Xue, W. Active disturbance rejection control for a flywheel energy storage system. IEEE Trans. Ind. Electron. 2015, 62, 991–1001. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Z.; Sun, M.; Sun, Q. Cascade active disturbance rejection control of a high-purity distillation column with measurement noise. Ind. Eng. Chem. Res. 2018, 57, 4623–4631. [Google Scholar] [CrossRef]
- Xue, W.C.; Bai, W.Y.; Yang, S.; Song, K.; Huang, Y.; Xie, H. ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines. IEEE Trans. Ind. Electron. 2015, 62, 5847–5857. [Google Scholar] [CrossRef]
- Zheng, Q.; Gao, Z.Q. On practical applications of active disturbance rejection control. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; pp. 6095–6100. [Google Scholar]
- Weigang, P.; Hairong, X.; Yaozhen, H.; Changshun, W.; Guiyong, Y. Nonlinear active disturbance rejection controller research of main engine for ship. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 4978–4981. [Google Scholar]
- Hua, H.; Ma, N.; Ma, J.; Zhu, X. Robust intelligent control design for marine diesel engine. J. Shanghai Jiaotong Univ. (Sci.) 2013, 18, 660–666. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, J.; Zhang, J.; Li, W.; Liu, Y.; Fu, W.; Ma, X. Speed control for a marine diesel engine based on the combined linear-nonlinear active disturbance rejection control. Math. Probl. Eng. 2018. [Google Scholar] [CrossRef]
- Yurkovich, S.; Simpson, M. Comparative analysis for idle speed control: A crank-angle domain viewpoint. In Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), Albuquerque, NM, USA, 4–6 June 1997; Volume 271, pp. 278–283. [Google Scholar]
- De Santis, E.; Di Benedetto, M.D.; Pola, G. Digital idle speed control of automotive engines: A safety problem for hybrid systems. Nonlinear Anal. Theorymethods Appl. 2006, 65, 1705–1724. [Google Scholar] [CrossRef]
- Tibola, J.R.; Metzka Lanzanova, T.D.; Santos Martins, M.E.; Gruendling, H.A.; Pinheiro, H. Modeling and speed control design of an ethanol engine for variable speed gensets. Control Eng. Pract. 2015, 35, 54–66. [Google Scholar] [CrossRef]
- Osburn, A.W. Performance Enhancement of Internal Combustion Engines Using Crank Angle Domain Control. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2003. [Google Scholar]
- Miklosovic, R.; Radke, A.; Gao, Z. Discrete implementation and generalization of the extended state observer. In Proceedings of the American Control Conference 2006, Minneapolis, MN, USA, 14–16 June 2006; pp. 2209–2215. [Google Scholar]
- Li, J.; Xia, Y.Q.; Qi, X.H.; Wan, H. On convergence of the discrete-time nonlinear extended state observer. J. Frankl. Inst. Eng. Appl. Math. 2018, 355, 501–519. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Shi, D.; Shi, L. Performance assessment of discrete-time extended state observers: Theoretical and experimental results. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2256–2268. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.Z.; Shi, D.W.; Shi, L. Toward event-triggered extended state observer. IEEE Trans. Autom. Control 2018, 63, 1842–1849. [Google Scholar] [CrossRef]
- Miskowicz, M. Send-on-delta concept: An event-based data reporting strategy. Sensors 2006, 6, 49–63. [Google Scholar] [CrossRef]
- Pawlowski, A.; Guzman, J.L.; Rodriguez, F.; Berenguel, M.; Sanchez, J.; Dormido, S. The influence of event-based sampling techniques on data transmission and control performance. In Proceedings of the 14th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Mallorca, Spain, 22–25 September 2009. [Google Scholar]
- Khashooei, B.A.; Antunes, D.J.; Heemels, W. Output-based event-triggered control with performance guarantees. IEEE Trans. Autom. Control 2017, 62, 3646–3652. [Google Scholar] [CrossRef]
- Hung, C.-W.; Lin, C.-T.; Liu, C.-W.; Yen, J.-Y. A variable-sampling controller for brushless DC motor dives with low-resolution position sensors. IEEE Trans. Ind. Electron. 2007, 54, 2846–2852. [Google Scholar] [CrossRef]
- Xue, W.C.; Huang, Y. Tuning of sampled-data ADRC for nonlinear uncertain systems. J. Syst. Sci. Complex. 2016, 29, 1187–1211. [Google Scholar] [CrossRef]
- Herbst, G. A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners. Electronics 2013, 2, 246–279. [Google Scholar] [CrossRef]
- Jimbo, T.; Hayakawa, Y. A physical model for engine control design via role state variables. Control Eng. Pract. 2011, 19, 276–286. [Google Scholar] [CrossRef]
- Jiang, D.; Huang, Y.; Li, G.; Hao, D.; Zuo, Z. Design of a speed tracking controller for heavy-duty vehicles with an all-speed governor based on a model predictive control strategy. Int. J. Engine Res. 2017, 18, 930–940. [Google Scholar] [CrossRef]
- Wahlstrom, J.; Eriksson, L. Modeling of a Diesel Engine with VGT and EGR Including Oxygen Mass Fraction; Linköping University Electronic Press: Linköping, Sweden, 2006. [Google Scholar]
- Wahlstrom, J.; Eriksson, L. Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2011, 225, 960–986. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Song, K.; Yang, S.; Tatsumi, J.; Zheng, Q.L.; Zhang, H.; Gao, Z.Q. On decoupling control of the VGT-EGR system in diesel engines: A new framework. IEEE Trans. Control Syst. Technol. 2016, 24, 1788–1796. [Google Scholar] [CrossRef]
- Balluchi, A.; Benvenuti, L.; Benedetto, M.D.D.; Pinello, C.; Sangiovanni-Vincentelli, A.L. Automotive engine control and hybrid systems: Challenges and opportunities. Proc. IEEE 2000, 88, 888–912. [Google Scholar] [CrossRef]
- Schulze, T.; Wiedemeier, M.; Schuette, H. Crank Angle-Based Diesel Engine Modeling for Hardware-in-the-Loop Applications with In-Cylinder Pressure Sensors; SAE Technical Paper 2007-01-1303; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Ali, S.A.; Saraswati, S. Cycle-by-cycle estimation of IMEP and peak pressure using crankshaft speed measurements. J. Intell. Fuzzy Syst. 2015, 28, 2761–2770. [Google Scholar] [CrossRef]
- Al-Durra, A. A model-dased methodology for real-time estimation of diesel engine cylinder pressure. J. Dyn. Syst. Meas. Control 2011, 133, 031005. [Google Scholar] [CrossRef]
- Casoli, P.; Gambarotta, A.; Pompini, N.; Caiazzo, U.; Lanfranco, E.; Palmisano, A. Development and validation of a “crank-angle” model of an automotive turbocharged engine for HiL aApplications. In Proceedings of the Ati 2013—68th Conference of the Italian Thermal Machines Engineering Association, Bologna, Italy, 11–13 September 2013; Morini, G.L., Bianchi, M., Saccani, C., Cocchi, A., Eds.; Volume 45, pp. 839–848. [Google Scholar]
- Li, R.; Huang, Y.; Li, G.; Song, H. Control-oriented modeling and analysis for turbocharged diesel engine system. In Proceedings of the International Conference on Measurement, Information and Control, Harbin, China, 16–18 August 2013; pp. 855–860. [Google Scholar]
- Wang, H.Y.; Wu, X.Y. Modified mean value model for a common rail marine diesel engine. In Proceedings of the IEEE 2008 International Workshop on Modelling, Simulation and Optimization (WMSO), Hong Kong, China, 27–28 December 2008; pp. 160–162. [Google Scholar]
- Wang, R.; Li, X.; Ahmed, Q.; Liu, Y.; Ma, X. Speed control of a marine engine using predictive functional control based PID controller. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 3908–3914. [Google Scholar]
- Miklosovic, R.; Gao, Z.Q. A robust two-degree-of-freedom control design technique and its practical application. In Proceedings of the 2004 IEEE Industry Applications Conference 2004, Seattle, WA, USA, 3–7 October 2004; Volumes 1–4, pp. 1495–1502. [Google Scholar]
- Song, C.; Wei, C.; Yang, F.; Cui, N. High-order sliding mode-based fixed-time active disturbance rejection control for quadrotor attitude system. Electronics 2018, 7, 357. [Google Scholar] [CrossRef]
- Gao, Z. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 4989–4996. [Google Scholar]
- Astrom, K.J.; Hagglund, T. The future of PID control. Control Eng. Pract. 2001, 9, 1163–1175. [Google Scholar] [CrossRef]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, Y.; Guo, C. CMAC-PID integrated controller used in marine propulsion plant. In Proceedings of the 2010 International Conference on Intelligent Control and Information Processing, Dalian, China, 13–15 August 2010; pp. 367–370. [Google Scholar]
- Li, P.; Shen, T.; Liu, D. Idle speed performance improvement via torque balancing control in ignition-event scale for SI engines with multi-cylinders. Int. J. Engine Res. 2012, 13, 65–76. [Google Scholar] [CrossRef]
- Ostman, F.; Toivonen, H.T. Adaptive cylinder balancing of internal combustion engines. IEEE Trans. Control Syst. Technol. 2011, 19, 782–791. [Google Scholar] [CrossRef]
- Li, S.H.; Liu, Z.G. Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Trans. Ind. Electron. 2009, 56, 3050–3059. [Google Scholar] [CrossRef]
Controller | Settling Time (s) | Overshoot (rpm) | Steady-State Speed Fluctuation (rpm) |
VSR-Fuzzy-PID | 1.6 1, 1.5 2, 3.5 3 | 19.1 1, 16.8 2, −39.0 3 | 4.8 a, 7.4 b, 12.5 c |
VSR-ADRC | 1.4 1, 1.4 2, 2.8 3 | 0 1, 0 2, 0 3 | 3.6 a, 7.4 b, 12.0 c |
FSR-ADRC | 1.4 1, 1.4 2, 3.2 3 | 0 1, 0 2, 0 3 | 4.4 a, 8.8 b, 12.0 c |
Integrated Absolute Error (IAE) (×10−3) | Fuel Consumption (kg × 10−3) | ||
1849.9 a, 2291.0 b, 2991.5 c | 141.3 a, 992.2 b, 3429.9 c | ||
1416.3 a, 2046.0 b, 2922.4 c | 140.1 a, 989.1 b, 3417.7 c | ||
1675.7 a, 2468.6 b, 2922.4 c | 140.4 a, 994.4 b, 3422.5 c |
Controller | Speed Fluctuation (rpm) | ||
---|---|---|---|
VSR-Fuzzy-PID | 27 | 27,393.5 | 8559.8 |
VSR-ADRC | 23 | 16,469.9 | 8515.1 |
FSR-ADRC | 23 | 18,332.3 | 8536.9 |
Controller | Speed Fluctuation (rpm) | ||
---|---|---|---|
VSR-Fuzzy-PID | 25 | 28,489.5 | 9260.6 |
VSR-ADRC | 22 | 18,783.9 | 9247.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Li, X.; Liu, Y.; Ahemd, Q.; Yang, Y.; Feng, C.; Ma, X. Variable Sampling Rate based Active Disturbance Control for a Marine Diesel Engine. Electronics 2019, 8, 370. https://doi.org/10.3390/electronics8040370
Wang R, Li X, Liu Y, Ahemd Q, Yang Y, Feng C, Ma X. Variable Sampling Rate based Active Disturbance Control for a Marine Diesel Engine. Electronics. 2019; 8(4):370. https://doi.org/10.3390/electronics8040370
Chicago/Turabian StyleWang, Runzhi, Xuemin Li, Yufei Liu, Qadeer Ahemd, Yunlong Yang, Chunyue Feng, and Xiuzhen Ma. 2019. "Variable Sampling Rate based Active Disturbance Control for a Marine Diesel Engine" Electronics 8, no. 4: 370. https://doi.org/10.3390/electronics8040370
APA StyleWang, R., Li, X., Liu, Y., Ahemd, Q., Yang, Y., Feng, C., & Ma, X. (2019). Variable Sampling Rate based Active Disturbance Control for a Marine Diesel Engine. Electronics, 8(4), 370. https://doi.org/10.3390/electronics8040370