# Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Mathematical Formulation and DIVE Scheme

#### 2.2. Multiresolution DIVE

## 3. Results

#### 3.1. Breast Phantom Imaging

#### 3.2. Tree Trunk Inspection

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed.; Springer: Berlin, Germany, 1998; ISBN 9781461449423. [Google Scholar]
- Ambrosanio, M.; Kosmas, P.; Pascazio, V. A Multi-Threshold Iterative DBIM-Based Algorithm for the Imaging of Heterogeneous Breast Tissues. IEEE Trans. Biomed. Eng.
**2018**. [Google Scholar] [CrossRef] - Miao, Z.; Kosmas, P. Multiple-Frequency DBIM-TwIST Algorithm for Microwave Breast Imaging. IEEE Trans. Antennas Propag.
**2017**, 65, 2507–2516. [Google Scholar] [CrossRef] - Bisio, I.; Estatico, C.; Fedeli, A.; Lavagetto, F.; Pastorino, M.; Randazzo, A.; Sciarrone, A. Brain Stroke Microwave Imaging by Means of a Newton-Conjugate-Gradient Method in Lp Banach Spaces. IEEE Trans. Microw. Theory Tech.
**2018**, 66, 3668–3682. [Google Scholar] [CrossRef] - Zamani, A.; Abbosh, A.M.; Mobashsher, A.T. Fast Frequency-Based Multistatic Microwave Imaging Algorithm with Application to Brain Injury Detection. IEEE Trans. Microw. Theory Tech.
**2016**, 64, 653–662. [Google Scholar] [CrossRef] - Neira, L.M.; van Veen, B.D.; Hagness, S.C. High-Resolution Microwave Breast Imaging Using a 3-D Inverse Scattering Algorithm with a Variable-Strength Spatial Prior Constraint. IEEE Trans. Antennas Propag.
**2017**, 65, 6002–6014. [Google Scholar] [CrossRef] - Maurizka, A.; Munir, A. Experimental validation of microwave imaging for wood inspection. In Proceedings of the Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 1709–1712. [Google Scholar]
- Pastorino, M.; Randazzo, A.; Fedeli, A.; Salvadè, A.; Poretti, S.; Maffongelli, M.; Monleone, R.; Lanini, M. A microwave tomographic system for wood characterization in the forest products industry. Wood Mater. Sci. Eng.
**2015**, 10, 75–85. [Google Scholar] [CrossRef] - Bevacqua, M.; Bellizzi, G.; Isernia, T.; Crocco, L. A Method for Quantitative Imaging of Electrical Properties of Human Tissues from Only Amplitude Electromagnetic Data. Inverse Probl.
**2018**, 35, 025006. [Google Scholar] [CrossRef] - Bevacqua, M.; Bellizzi, G.; Isernia, T.; Crocco, L. A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion. Prog. Electromagn. Res.
**2019**, 164, 1–15. [Google Scholar] - Leone, G.; Brancaccio, A.; Pierri, R. Linear and quadratic inverse scattering for angularly varying circular cylinders. J. Opt. Soc. Am. A
**1999**, 16, 2887–2895. [Google Scholar] [CrossRef] - Marengo, E.A.; Galagarza, E.S.; Solimene, R. Data-driven linearizing approach in inverse scattering. J. Opt. Soc. Am. A
**2017**, 34, 1561–1576. [Google Scholar] [CrossRef] - Pastorino, M.; Massa, A.; Caorsi, S. A microwave inverse scattering technique for image reconstruction based on a genetic algorithm. IEEE Trans. Instrum. Meas.
**2000**, 49, 573–578. [Google Scholar] [CrossRef] - Habashy, T.M.; Groom, R.; Spies, B. A non linear approach to electromagnetic scattering. J. Geophys. Res.
**1993**, 98, 1759–1775. [Google Scholar] [CrossRef] - Chew, W.C.; Wang, Y.M. Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method. IEEE Trans. Med. Imaging
**1990**, 9, 218225. [Google Scholar] [CrossRef] - Isernia, T.; Pascazio, V.; Pierri, R. A non linear estimation method in tomographic imaging. IEEE Trans. Geosci. Remote Sens.
**1997**, 35, 910–923. [Google Scholar] [CrossRef] - van den Berg, P.M.; Kleinman, R.E. A contrast source inversion method. Inverse Probl.
**1997**, 13, 1607. [Google Scholar] [CrossRef] - Mojabi, P.; LoVetri, J. Overview and Classification of Some Regularization Techniques for the Gauss-Newton Inversion Method Applied to Inverse Scattering Problems. IEEE Trans. Antennas Propag.
**2009**, 57, 2658–2665. [Google Scholar] [CrossRef] - Isernia, T.; Pascazio, V.; Pierri, R. On the Local Minima in a Tomographic Imaging Technique. IEEE Trans Geosci. Rem. Sens.
**2001**, 39, 1596–1607. [Google Scholar] [CrossRef] - Bucci, O.M.; Crocco, L.; Isernia, T.; Pascazio, V. Inverse scattering problems with multifrequency data: Reconstruction capabilities and solution strategies. IEEE Trans. Geosci. Remote Sens.
**2000**, 38, 1749–1756. [Google Scholar] [CrossRef] - Palmeri, R.; Bevacqua, M.T.; Crocco, L.; Isernia, T.; Di Donato, L. Microwave Imaging via Distorted Iterated Virtual Experiments. IEEE Trans. Antennas Propag.
**2017**, 65, 829–838. [Google Scholar] [CrossRef] - Bucci, O.M.; Crocco, L.; Isernia, T.; Pascazio, V. An adaptive wavelet-based approach for non-destructive evaluation applications. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Salt Lake City, UT, USA, 16–21 July 2000; pp. 1756–1759. [Google Scholar]
- Bertero, M.; Boccacci, P. Introduction to Inverse Problems in Imaging; Institute of Physics: Bristol, UK, 1998. [Google Scholar]
- Bevacqua, M.; Di Donato, L. Improved TV-CS Approches for Inverse Scattering Problem. Sci. World J.
**2015**. [Google Scholar] [CrossRef] - Chew, W.C.; Lin, J.H. A frequency-hopping approach for microwave imaging of large inhomogeneous bodies. IEEE Microw. Guided Wave Lett.
**2002**, 5, 439–441. [Google Scholar] [CrossRef] - Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell.
**1989**, 2, 674–693. [Google Scholar] [CrossRef] - Palmeri, R.; Bevacqua, M.T.; Scapaticci, R.; Morabito, A.F.; Crocco, L.; Isernia, T. Biomedical imaging via wavelet-based regularization and distorted iterated virtual experiments. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 11–15 September 2017; pp. 1381–1384. [Google Scholar]
- Fear, E.; Hagness, S.; Meaney, P.; Okoniewski, M.; Stuchly, M. Enhancing breast tumor detection with near-field imaging. IEEE Microw.
**2002**, 3, 48–56. [Google Scholar] [CrossRef] - Bevacqua, M.T.; Scapaticci, R. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging with Magnetic Nanoparticles as Contrast Agent. IEEE Trans. Med. Imaging
**2016**, 35, 665–673. [Google Scholar] [CrossRef] - Scapaticci, R.; Catapano, I.; Crocco, L. Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues. IEEE Trans. Antennas Propag.
**2012**, 60, 3717–3726. [Google Scholar] [CrossRef] - Scapaticci, R.; Kosmas, P.; Crocco, L. Wavelet-Based Regularization for Robust Microwave Imaging in Medical Applications. IEEE Trans. Biomed. Eng.
**2015**, 64, 1195–1202. [Google Scholar] [CrossRef] - Boero, F.; Fedeli, A.; Lanini, M.; Maffongelli, M.; Monteleone, R.; Pastorino, M.; Randazzo, A.; Salvadè, A.; Sansalone, A. Microwave Tomography for the inspection of wood materials: Imaging system and experimental results. IEEE Microw. Theory Techn.
**2018**, 66, 3497–3510. [Google Scholar] [CrossRef] - Kaestner, A.P.; Baath, L.B. Microwave polarimetry tomography of wood. IEEE Sens. J.
**2005**, 5, 209–2015. [Google Scholar] [CrossRef] - Fedeli, A.; Pastorino, M.; Randazzo, A.; Lanini, M.; Maffongelli, M.; Monleone, R. Wood characterization by using microwave inverse scattering: Experimental results. In Proceedings of the 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 20–22 September 2017; pp. 1–3. [Google Scholar]
- Bucur, V. Nondestructive Characterization and Imaging of Wood; Springer: Berlin, Germany, 2003; ISBN 9783662089866. [Google Scholar]
- Catapano, I.; Crocco, L. An imaging method for concealed targets. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 1301–1309. [Google Scholar] [CrossRef] - Zastrow, E.; Davis, S.K.; Lazebnik, M.; Kelcz, F.; Van Veem, B.D.; Hagness, S.C. Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Trans. Biomed. Eng.
**2008**, 55, 2792–2800. [Google Scholar] [CrossRef] - Catapano, I.; Di Donato, L.; Crocco, L.; Bucci, O.M.; Morabito, A.F.; Isernia, T.; Massa, R. On quantitative microwave tomography of female breast. Prog. Electromagn. Res.
**2009**, 97, 75–93. [Google Scholar] [CrossRef] - Bucci, O.M.; Isernia, T. Electromagnetic inverse scattering: Retrievable information and measurement strategies. Radio Sci.
**1997**, 32, 2123–2138. [Google Scholar] [CrossRef] - Fu, L.; Liu, S.S.; Liu, L. Internal structure characterization of living tree trunk cross-section using GPR: Numerical examples and field data analysis. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 July 2014; pp. 155–160. [Google Scholar]
- Di Donato, L.; Palmeri, R.; Sorbello, G.; Isernia, T.; Crocco, L. A new linear distorted wave inversion method for microwave imaging via virtual experiments. IEEE Microw. Theory Techn.
**2016**, 64, 2478–2488. [Google Scholar] [CrossRef]

**Figure 2.**Dense breast (ID 062204). Real part ε′ (

**top**) and imaginary part ε″ (

**bottom**) of the reference permittivity and of the reconstructed profile at (from the left to the right) 1 GHz, 2 GHz, 3 GHz, and 4 GHz.

**Figure 3.**Very dense breast (ID 012304). Real part ε′ (

**top**) and imaginary part ε″ (

**bottom**) of the reference permittivity and of the reconstructed profile at (from the left to the right) 1 GHz, 2 GHz, 3 GHz, and 4 GHz.

**Figure 4.**Oak tree trunk. Real part of permittivity ε′ (

**top**) and imaginary part ε″ (

**bottom**) of the reference profile and of the reconstructed profile at (from the left to the right) 100 MHz, 400 MHz, 700 MHz, and 1 GHz.

Frequency | NMSE on ε | NMSE on ε′ | NMSE on ε″ | NMSE on ε from [31] |
---|---|---|---|---|

1 GHz | 0.29 | 0.28 | 0.69 | 0.41 |

2 GHz | 0.19 | 0.18 | 0.47 | Not provided |

3 GHz | 0.13 | 0.12 | 0.45 | 0.28 |

4 GHz | 0.11 | 0.10 | 0.42 | - |

Frequency | NMSE on ε | NMSE on ε′ | NMSE on ε″ | NMSE on ε from [31] |
---|---|---|---|---|

1 GHz | 0.22 | 0.20 | 0.66 | 0.39 |

2 GHz | 0.15 | 0.14 | 0.47 | Not provided |

3 GHz | 0.10 | 0.09 | 0.41 | 0.29 |

4 GHz | 0.08 | 0.07 | 0.40 | - |

Frequency | NMSE on ε | NMSE on ε′ | NMSE on ε″ |
---|---|---|---|

100 MHz | 0.15 | 0.14 | 0.19 |

400 MHz | 0.05 | 0.05 | 0.28 |

700 MHz | 0.03 | 0.03 | 0.63 |

1 GHz | 0.02 | 0.02 | 0.97 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bevacqua, M.T.; Palmeri, R.; Scapaticci, R. Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios. *Electronics* **2019**, *8*, 153.
https://doi.org/10.3390/electronics8020153

**AMA Style**

Bevacqua MT, Palmeri R, Scapaticci R. Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios. *Electronics*. 2019; 8(2):153.
https://doi.org/10.3390/electronics8020153

**Chicago/Turabian Style**

Bevacqua, Martina T., Roberta Palmeri, and Rosa Scapaticci. 2019. "Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios" *Electronics* 8, no. 2: 153.
https://doi.org/10.3390/electronics8020153