Tunnel-Free Distributed Mobility Management (DMM) Support Protocol for Future Mobile Networks
Abstract
:1. Introduction
2. Proposed Tunnel-Free DMM Support Protocol
2.1. Overview
2.2. Protocol Operation
- Connection to BMA1.
- (RS) Router solicitation notification to BMA1.
- (RA) Router advertisement notification.
- Address configuration
- BU notification to BMA1.
- BA notification to MN.
- MN connected with CN for communication via BMA1.
- Handover requested by MN from BMA1.
- Handover initiated after scanning and finding BMA2.
- MN’s connection established with BMA2.
- BMA2 informs the CN about the MN’s updated path.
- BMA2 informed of handover completion.
- NBU from BMA1 to BMA2.
- MN’s connection with CN via BMA2
- NBAck from BMA2 to BMA1.
- BMA1 informed of handover completion.
3. Analytical Modeling and Performance Evaluation
3.1. Network Topology
- dL2: handover delay of link layer depending on the chipset implementation for a wireless interface.
- dA: link layer authentication latency.
- dMD: movement detection process delay.
- dDAD: duplicate address detection delay.
- dN: new binding update and acknowledgement process delay.
- dR: delay of proposed protocol’s handover registration.
- dS: arrival delay of first packet of previous session from current BMA to the MN.
- mRS, mRA: RS/RA message size = 52, 80 bytes.
- mBU, mBA: BU/BA message size = 56, 56 bytes.
- mNBU, mNBAck: NBU/NBAck message size = 56, 56 bytes.
- mD: data packet size = 1 kbytes.
- mM: mobility option for an address bound to the MN = 20 bytes.
- bWL: bandwidth of wireless link.
- tWL: propagation time for the wireless link.
- bWD: bandwidth of wired link.
- tWD: propagation time for the wired link.
- pf: link failure probability over wireless link.
- d: the number of hops between the CN and current BMA.
- S(L): average session length in data packet.
- i: inter-packet time.
3.2. Modeling the Handover Latency
3.2.1. Handover Latency of MIPv6
3.2.2. Handover Latency of FMIPv6
3.2.3. Handover Latency of HMIPv6
3.2.4. Handover Latency of PMIPv6
3.2.5. Handover Latency of Proposed Approach
3.2.6. Handover Latency Analysis
3.3. Handover Blocking Probability
3.3.1. Handover Blocking Probability of the Proposed Approach
3.3.2. Handover Blocking Probability Analysis with Other Approaches
3.4. Data Packet Loss
3.4.1. Data Packet Loss with the Proposed Approach
3.4.2. Data Packet Loss Analysis with Other Approaches
4. Results and Discussion
4.1. Handover Latency
4.2. Handover Blocking Probability
4.3. Data Packet Loss
5. Conclusions
6. Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Sandvine, I. The Mobile Internet Phenomena Report Febrauy 2019; Sandvine Inc.: Fremont, CA, USA, 2019. [Google Scholar]
- Perkins, C.; Johnson, D.; Arkko, J. RFC 6275: Mobility Support in IPv6; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2011. [Google Scholar]
- Gundavelli, S.; Leung, K.; Devarapalli, V.; Chowdhury, K.; Patil, B. Rfc 5213: Proxy Mobile Ipv6; IETF: Fremont, CA, USA, 2008. [Google Scholar]
- Chan, H.; Liu, D.; Seite, P.; Yokota, H.; Korhonen, J. Rfc 7333: Requirements for Distributed Mobility Management, IETF. 2014. Available online: https://www.rfc-editor.org/rfc/rfc7333.txt (accessed on 14 May 2017).
- Zuniga, J.C.; Bernardos, C.J.; De La Oliva, A.; Melia, T.; Costa, R.; Reznik, A. Distributed Mobility Management: A Standards Landscape. IEEE Commun. Mag. 2013, 51, 80–87. [Google Scholar] [CrossRef]
- Lee, J.H.; Bonnin, J.M.; Seite, P.; Chan, H.A. Distributed IP mobility management from the perspective of the IETF: Motivations, requirements, approaches, comparison, and challenges. IEEE Wirel. Commun. 2013, 20, 159–168. [Google Scholar] [CrossRef]
- Soliman, H. RFC 5555: Mobile IPv6 support for dual stack hosts and routers. 2009, pp. 1–40. Available online: https://tools.ietf.org/html/rfc5555 (accessed on 11 December 2019).
- Lee, J.H.; Bonnin, J.M.; You, I.; Chung, T.M. Comparative handover performance analysis of IPv6 mobility management protocols. IEEE Trans. Ind. Electr. 2012, 60, 1077–1088. [Google Scholar]
- Jaumard, B.; Duong, H.Q.; Armolavicius, R.; Morris, T.; Djukic, P. Efficient real-time scalable make-before-break network re-routing. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, 52–66. [Google Scholar] [CrossRef]
- Giust, F.; Bernardos, C.J.; Figueiredo, S.; Neves, P.; Melia, T. A hybrid MIPv6 and PMIPv6 distributed mobility management: The MEDIEVAL approach. In Proceedings of the 2011 IEEE Symposium on Computers and Communications (ISCC), Kerkyra, Greece, 28 June–1 July 2011. [Google Scholar]
- Ali-Ahmad, H.; Ouzzif, M.; Bertin, P.; Lagrange, X. Distributed dynamic mobile IPv6: Design and evaluation. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013. [Google Scholar]
- Chan, H.A.; Yokota, H.; Xie, J.; Seite, P.; Liu, D. Distributed and dynamic mobility management in mobile internet: Current approaches and issues. JCM 2011, 6, 4–15. [Google Scholar] [CrossRef]
- Lee, J.H.; Ernst, T.; Chung, T.M. Cost analysis of IP mobility management protocols for consumer mobile devices. IEEE Trans. Consum. Electr. 2010, 56, 1010–1017. [Google Scholar] [CrossRef]
- Giust, F.; de la Oliva, A.; Bernardos, C.J. Flat access and mobility architecture: An IPv6 distributed client mobility management solution. In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai, China, 10–15 April 2011. [Google Scholar]
- Chan, H.A. Distributed mobility management with mobile IP. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012. [Google Scholar]
- Condeixa, T.; Guardalben, L.; Gomes, T.; Sargento, S.; Sofia, R. Make-without-break horizontal IP handovers for Distributed Mobility Management schemes. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013. [Google Scholar]
- Lee, J.H.; Singh, K.D.; Bonnin, J.M.; Pack, S. Mobile data offloading: A host-based distributed mobility management approach. IEEE Internet Comput. 2013, 18, 20–29. [Google Scholar] [CrossRef]
- Cominardi, L.; Giust, F.; Bernardos, C.J.; De La Oliva, A. Distributed mobility management solutions for next mobile network architectures. Comput. Netw. 2017, 121, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Murillo, J.; Friderikos, V.; González-Sánchez, J. A hybrid DMM solution and trade-off analysis for future wireless networks. Comput. Netw. 2018, 133, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-M.; Dao, D.-T.; Chiang, M.-S. A Bursty Multi-node Handover scheme for mobile internet using the partially Distributed Mobility Management (BMH–DMM) architecture. Telecommun. Syst. 2018, 69, 113–130. [Google Scholar] [CrossRef]
- Huang, C.-M.; Dao, D.-T.; Chiang, M.-S. A MEC-Assisted Method for Early Handover Using the Fully Distributed Mobility Management (MEC-F-DMM) Architecture. In International Conference on Advanced Information Networking and Applications; Springer: Berlin, Germany, 2019. [Google Scholar]
- Fafolahan, E.M.O.; Pierre, S. A Seamless Mobility Management Protocol in 5G Locator Identificator Split Dense Small Cells. IEEE Trans. Mob. Comput. 2019. [Google Scholar] [CrossRef]
- Ramachandran, K.; Rangarajan, S.; Lin, J.C. Make-before-break mac layer handoff in 802.11 wireless networks. In Proceedings of the 2006 IEEE International Conference on Communications, Istanbul, Turkey, 11–15 June 2006. [Google Scholar]
- Wishart, R.; Portmann, M.; Indulska, J. Evaluation of wireless mesh network handoff approaches for public safety and disaster recovery networks. In Proceedings of the 2008 Australasian Telecommunication Networks and Applications Conference, Adelaide, SA, Australia, 7–10 December 2008. [Google Scholar]
- Jeon, S.; Kang, N.; Corujo, D.; Aguiar, R.L. Comprehensive performance evaluation of distributed and dynamic mobility routing strategy. Comput. Netw. 2015, 79, 53–67. [Google Scholar] [CrossRef]
- Xie, G.; Chen, J.; Zheng, H.; Yang, J.; Zhang, Y. Handover latency of MIPv6 implementation in Linux. In Proceedings of the IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007. [Google Scholar]
- Ivov, E.; Montavont, J.; Noel, T. Thorough empirical analysis of the IETF FMIPv6 protocol over IEEE 802.11 networks. IEEE Wirel. Commun. 2008, 15, 65–72. [Google Scholar] [CrossRef]
- Castelluccia, C. HMIPv6: A hierarchical mobile IPv6 proposal. ACM Sigmob. Mob. Comput. Commun. Rev. 2000, 4, 48–59. [Google Scholar] [CrossRef]
- Udugama, A.; Iqbal, M.U.; Toseef, U.; Goerg, C.; Fan, C.; Schlaeger, M. Evaluation of a network based mobility management protocol: PMIPv6. In Proceedings of the VTC Spring 2009-IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 26–29 April 2009. [Google Scholar]
- Yang, S.; Zhou, H.; Qin, Y.; Zhang, H. SHIP: Cross-layer mobility management scheme based on Session Initiation Protocol and Host Identity Protocol. Telecommun. Syst. 2009, 42, 5–15. [Google Scholar] [CrossRef]
- McNair, J.; Akyildiz, I.F.; Bender, M.D. An inter-system handoff technique for the IMT-2000 system. In Proceedings of the IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), Tel Aviv, Israel, 26–30 March 2000. [Google Scholar]
- Makaya, C.; Pierre, S. An analytical framework for performance evaluation of IPv6-based mobility management protocols. IEEE Trans. Wirel. Commun. 2008, 7, 972–983. [Google Scholar] [CrossRef]
- Lee, J.-H.; Chung, T.-M. How much do we gain by introducing route optimization in Proxy Mobile IPv6 networks? Ann. Telecommun. 2010, 65, 233–246. [Google Scholar] [CrossRef]
- Zhang, X.; Castellanos, J.G.; Campbell, A.T. P-MIP: Paging extensions for mobile IP. Mob. Netw. Appl. 2002, 7, 127–141. [Google Scholar] [CrossRef]
- Issariyakul, T.; Hossain, E. Introduction to network simulator 2 (NS2). In Introduction to network simulator NS2; Springer: Boston, MA, USA, 2009; pp. 1–18. [Google Scholar]
- Meeneghan, P.; Delaney, D. An introduction to NS, Nam and OTcl scripting; National University of Ireland: Galway, Ireland, 2004. [Google Scholar]
- Banerjee, N.; Wu, W.; Das, S.K. Mobility support in wireless Internet. IEEE Wirel. Commun. 2003, 10, 54–61. [Google Scholar] [CrossRef]
- Han, Y.-H.; Min, S.-G. Performance analysis of hierarchical mobile IPv6: Does it improve mobile IPv6 in terms of handover speed? Wirel. Personal Commun. 2009, 48, 463–483. [Google Scholar] [CrossRef]
- Pack, S.; Choi, J.; Kwon, T.; Choi, Y. Fast-handoff support in IEEE 802.11 wireless networks. IEEE Commun. Surv. Tutor. 2007, 9, 2–12. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aman, M.; Mahfooz, S.; Zubair, M.; Mukhtar, N.; Imran, K.; Khusro, S. Tunnel-Free Distributed Mobility Management (DMM) Support Protocol for Future Mobile Networks. Electronics 2019, 8, 1519. https://doi.org/10.3390/electronics8121519
Aman M, Mahfooz S, Zubair M, Mukhtar N, Imran K, Khusro S. Tunnel-Free Distributed Mobility Management (DMM) Support Protocol for Future Mobile Networks. Electronics. 2019; 8(12):1519. https://doi.org/10.3390/electronics8121519
Chicago/Turabian StyleAman, Madeeha, Saeed Mahfooz, Muhammad Zubair, Neelam Mukhtar, Kanwal Imran, and Shah Khusro. 2019. "Tunnel-Free Distributed Mobility Management (DMM) Support Protocol for Future Mobile Networks" Electronics 8, no. 12: 1519. https://doi.org/10.3390/electronics8121519
APA StyleAman, M., Mahfooz, S., Zubair, M., Mukhtar, N., Imran, K., & Khusro, S. (2019). Tunnel-Free Distributed Mobility Management (DMM) Support Protocol for Future Mobile Networks. Electronics, 8(12), 1519. https://doi.org/10.3390/electronics8121519