3d Beam Reconfigurable THz Antenna with Graphene-Based High-Impedance Surface
Abstract
:1. Introduction
2. Antenna Design
2.1. Switchable Graphene-Based High Impedance Surface (HIS)
2.2. Antenna Structure with the Graphene-Based High Impedance Surface (HIS)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, L.C.X.; Wang, C.; Chen, X.; Zhang, W. Compact Frequency Reconfigurable Slot Antenna for Wireless Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1795–1798. [Google Scholar] [CrossRef]
- Majid, H.A.; Rahim, M.K.A.; Hamid, M.R.; Ismail, M.F. Frequency and Pattern Reconfigurable Slot Antenna. IEEE Trans. Antennas Propag. 2014, 62, 5339–5343. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, L.; Zhuo, J.; Liu, Y.; Zhang, L.; Zhang, M.; Liu, Q.H. Frequency Reconfigurable Circular Patch Antenna with an Arc-Shaped Slot Ground Controlled by PIN Diodes. Int. J. Antennas Propag. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Trinh, L.H.; Le, T.N.; Staraj, R.; Ferrero, F.; Lizzi, L. A pattern-reconfigurable slot antenna for IoT network concentrators. Electronics 2017, 6, 105. [Google Scholar] [CrossRef]
- Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Gatti, R.V. Reconfigurable phased antenna array for extending cubesat operations to Ka-band: Design and feasibility. Acta Astronaut. 2017, 137, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zeng, Q.; Yan, X.; Wu, Y.; Lu, Q.; Zheng, C.; Hu, N.; Xie, W.; Zhang, X. Graphene-Based Multi-Beam Reconfigurable THz Antennas. IEEE Access 2019, 7, 30802–30808. [Google Scholar] [CrossRef]
- Wu, L.; Qu, M.; Liu, Y. A generalized lossy transmission-line model for tunable graphene-based transmission lines with attenuation phenomenon. Sci. Rep. 2016. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, X.; Bornemann, J. Design of a Reconfigurable MIMO System for THz Communications Based on Graphene Antennas. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 609–617. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, P.; Yu, D.; Li, G.; Tao, F. Dual-Band Reconfigurable Terahertz Patch Antenna With Graphene-Stack-Based Backing Cavity. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1541–1544. [Google Scholar] [CrossRef]
- Tamagnone, M.; Gómez-Díaz, J.S.; Mosig, J.R.; Perruisseau-Carrie, J. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef]
- Tamagnone, M.; Gómez-Díaz, J.S.; Mosig, J.R.; Perruisseau-Carrie, J. Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl. Phys. Lett. 2012. [Google Scholar] [CrossRef]
- Farmani, A.; Miri, M.; Sheikhi, M.H. Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photonics Technol. Lett. 2018, 30, 153–156. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A. Graphene Fabry–Perot Cavity Leaky-Wave Antennas: Plasmonic Versus Nonplasmonic Solutions. IEEE Trans. Antennas Propag. 2017, 65, 1651–1660. [Google Scholar] [CrossRef]
- Gómez-Díaz, J.S.; Perruisseau-Carrier, J. Graphene-based plasmonic switches at near infrared frequencies. Opt. Express 2013, 21, 15490–15504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sensale-Rodriguez, B.; Yan, R.; Kelly, M.M.; Fang, T.; Tahy, K.; Hwang, W.S.; Jena, D.; Liu, L.; Xing, H.G. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 2012, 3. [Google Scholar] [CrossRef] [PubMed]
- Habibpour, O.; He, Z.S.; Strupinski, W.; Rorsman, N.; Ciuk, T.; Ciepielewski, P.; Zirath, H. Graphene FET Gigabit ON–OFF Keying Demodulator at 96 GHz. IEEE Electron Device Lett. 2016, 37, 333–336. [Google Scholar] [CrossRef]
- Saeed, M.; Hamed, A.; Wang, Z.; Shaygan, M.; Neumaier, D.; Negra, R. Metal–Insulator–Graphene Diode Mixer Based on CVD Graphene-on-Glass. IEEE Electron Device Lett. 2018, 39, 1104–1107. [Google Scholar] [CrossRef]
- Hamed, A.; Habibpour, O.; Saeed, M.; Zirath, H.; Negra, R. W-Band Graphene-Based Six-Port Receiver. IEEE Microw. Wirel. Components Lett. 2018, 28, 347–349. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, Y.; Yu, J.; Qu, S.-W.; Yao, Y.; Chen, X. Circular beam-reconfigurable antenna base on graphene-metal hybrid. Electron. Lett. 2016, 52, 494–496. [Google Scholar] [CrossRef]
- Liang, F.; Yang, Z.-Z.; Xie, Y.-X.; Li, H.; Zhao, D.; Wang, B.-Z. Beam-Scanning Microstrip Quasi-Yagi–Uda Antenna Based on Hybrid Metal-Graphene Materials. IEEE Photon-Technol. Lett. 2018, 30, 1127–1130. [Google Scholar] [CrossRef]
- Sarrazin, J.; Lepage, A.; Begaud, X. Circular High-Impedance Surfaces Characterization. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Vallecchi, A.; De Luis, J.R.D.; Capolino, F.; De Flaviis, F. Low profile fully planar folded dipole antenna on a high impedance surface. IEEE Trans. Antennas Propag. 2012, 60, 51–62. [Google Scholar] [CrossRef]
- Amiri, M.A.; Balanis, C.A.; Birtcher, C.R. Analysis, design, and measurements of circularly symmetric high-impedance surfaces for loop antenna applications. IEEE Trans. Antennas Propag. 2016, 64, 618–629. [Google Scholar] [CrossRef]
- Li, M.; Xiao, S.-Q.; Wang, Z.; Wang, B.-Z. Compact Surface-Wave Assisted Beam-Steerable Antenna Based on HIS. IEEE Trans. Antennas Propag. 2014, 62, 3511–3519. [Google Scholar] [CrossRef]
- Mohamad, S.; Cahill, R.; Fusco, V. Selective High Impedance Surface Active Region Loading of Archimedean Spiral Antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 810–813. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-S.; Ku, T.-Y. A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1144–1147. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, L.-S.; Tang, M.; Mao, J. Design of a Beam Reconfigurable THz Antenna With Graphene-Based Switchable High-Impedance Surface. IEEE Trans. Nanotechnol. 2012, 11, 836–842. [Google Scholar] [CrossRef]
- Wang, X.-C.; Zhao, W.-S.; Hu, J.; Yin, W.-Y. Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Trans. Nanotechnol. 2015, 14, 62–69. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, L.-S.; Mao, J. Design of a switchable high impedance surface based on single-layer doped graphene for THz application. In Proceedings of the 2011 International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 12–16 September 2011. [Google Scholar] [CrossRef]
- Carrasco, E.; Tamagnone, M.; Perruisseau-Carrier, J. Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection. Appl. Phys. Lett. 2013, 102. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yao, Y.; Yu, J.; Chen, X. 3d Beam Reconfigurable THz Antenna with Graphene-Based High-Impedance Surface. Electronics 2019, 8, 1291. https://doi.org/10.3390/electronics8111291
Wang C, Yao Y, Yu J, Chen X. 3d Beam Reconfigurable THz Antenna with Graphene-Based High-Impedance Surface. Electronics. 2019; 8(11):1291. https://doi.org/10.3390/electronics8111291
Chicago/Turabian StyleWang, Caixia, Yuan Yao, Junsheng Yu, and Xiaodong Chen. 2019. "3d Beam Reconfigurable THz Antenna with Graphene-Based High-Impedance Surface" Electronics 8, no. 11: 1291. https://doi.org/10.3390/electronics8111291
APA StyleWang, C., Yao, Y., Yu, J., & Chen, X. (2019). 3d Beam Reconfigurable THz Antenna with Graphene-Based High-Impedance Surface. Electronics, 8(11), 1291. https://doi.org/10.3390/electronics8111291