Design and Implementation of Attitude Stabilization System for Marine Satellite Tracking Antenna
Abstract
:1. Introduction
2. Introduction of Attitude Stabilization System
2.1. Diagram of the Attitude Stabilization System
2.2. Attitude Sensor Board
2.3. Stepper Motor Control and Drive Board
3. Modeling and Parameter Identification
3.1. Velocity Model of Elevation Part
3.2. Linear Stepper Motor Model
3.3. Parameters Identification
3.3.1.
3.3.2. and
3.4. Model Uncertainty
4. Loop-Shaping Design
5. Experiment Setup and Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghahramani, A.; Karbasi, T.; Nasirian, M.; Sedigh, A.K. Predictive control of a two degrees of freedom xy robot (satellite tracking pedestal) and comparing gpc and gipc algorithms for satellite tracking. In Proceedings of the 2nd International Conference on Control, Instrumentation and Automation, Shiraz, Iran, 27–29 December 2011; pp. 865–870. [Google Scholar]
- Soltani, M.N.; Izadi-Zamanabadi, R.; Wisniewski, R. Reliable control of ship-mounted satellite tracking antenna. IEEE Trans. Control Syst. Technol. 2011, 19, 221–228. [Google Scholar] [CrossRef]
- Tseng, H.C.; Teo, D.W. Ship-mounted satellite tracking antenna with fuzzy logic control. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 639–645. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, L.; Wei, L. The design and implementation of the digital servo system for the satellite antenna. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–5. [Google Scholar]
- Ming, A.; Yamaoka, T.; Kida, T.; Kanamori, C.; Satoh, M. Accuracy improvement of ship mounted tracking antenna for satellite communications. In Proceedings of the IEEE International Conference Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; Volume 3, pp. 1369–1374. [Google Scholar]
- Shen, Q.; Wang, D.; Zhu, S.; Poh, E.K. Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft. IEEE Trans. Control Syst. Technol. 2015, 23, 1131–1138. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, D.; Zhu, S.; Poh, K. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2390–2405. [Google Scholar] [CrossRef]
- Ding, S.; Zheng, W.X. Nonsmooth attitude stabilization of a flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1163–1181. [Google Scholar] [CrossRef]
- Tayebi, A.; McGilvray, S. Attitude stabilization of a vtol quadrotor aircraft. IEEE Trans. Control Syst. Technol. 2006, 14, 562–571. [Google Scholar] [CrossRef]
- Lovera, M.; Marchi, E.D.; Bittanti, S. Periodic attitude control techniques for small satellites with magnetic actuators. IEEE Trans. Control Syst. Technol. 2002, 10, 90–95. [Google Scholar] [CrossRef]
- Romero, H.; Salazar, S.; Lozano, R. Real-time stabilization of an eight-rotor uav using optical flow. IEEE Trans. Robot. 2009, 25, 809–817. [Google Scholar] [CrossRef]
- Xiao, B.; Huo, M.; Yang, X.; Zhang, Y. Fault-tolerant attitude stabilization for satellites without rate sensor. IEEE Trans. Ind. Electron. 2015, 62, 7191–7202. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, Y.; Fu, M. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 2011, 58, 4898–4907. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, Z. Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty. IEEE Trans. Ind. Electron. 2017, 64, 7994–8002. [Google Scholar] [CrossRef]
- Liu, H.; Xi, J.; Zhong, Y. Robust attitude stabilization for nonlinear quadrotor systems with uncertainties and delays. IEEE Trans. Ind. Electron. 2017, 64, 5585–5594. [Google Scholar] [CrossRef]
- Euston, M.; Coote, P.; Mahony, R.; Kim, J.; Hamel, T. A complementary filter for attitude estimation of a fixed-wing uav. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 340–345. [Google Scholar]
- Wang, Y.; Soltani, M.; Hussain, D.M.A. An attitude heading and reference system for marine satellite tracking antenna. IEEE Trans. Ind. Electron. 2017, 64, 3095–3104. [Google Scholar] [CrossRef]
- Markley, F.L. Attitude error representations for kalman filtering. J. Guid. Control Dyn. 2003, 26, 311–317. [Google Scholar] [CrossRef]
- Mahony, R.; Hamel, T.; Pflimlin, J.-M. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef] [Green Version]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; Wiley: Hoboken, NJ, USA, 2011; ISBN 9781119991496. [Google Scholar]
- Chen, T.-C.; Su, Y.-C. High performance algorithm realization on fpga for stepper motor controller. In Proceedings of the 2008 SICE Annual Conference, Tokyo, Japan, 20–22 August 2008; pp. 1390–1395. [Google Scholar]
- Carrica, D.; Funes, M.A.; Gonzalez, S.A. Novel stepper motor controller based on fpga hardware implementation. IEEE/ASME Trans. Mechatron. 2003, 8, 120–124. [Google Scholar] [CrossRef]
- Bangji, W.; Qingxiang, L.; Lei, Z.; Yanrong, Z.; Xiangqiang, L.; Jianqiong, Z. Velocity profile algorithm realization on fpga for stepper motor controller. In Proceedings of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Dengleng, China, 8–10 August 2011; pp. 6072–6075. [Google Scholar]
- Hu, W.; Song, P. Automatic code-generation of spwm of cascaded two h-bridge inverter base on matlab. In Proceedings of the 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, China, 19–20 May 2012; pp. 590–593. [Google Scholar]
- Gugala, K.; Rybarczyk, A. Automatic synthesizable VHDL code generation from neural networks models using matlab. In Proceedings of the 2009 MIXDES-16th International Conference Mixed Design of Integrated Circuits Systems, Lodz, Poland, 25–27 June 2009; pp. 238–241. [Google Scholar]
- Schwarz, M.H.; Sheng, H.; Sheleh, A.; Boercsoek, J. Matlab/simulink generated source code for safety related systems. In Proceedings of the 2008 IEEE/ACS International Conference on Computer Systems and Applications, Doha, Qatar, 31 March–4 April 2008; pp. 1058–1063. [Google Scholar]
- Zhou, K.; Doyle, J.C.; Glover, K. Robust and Optimal Control; Englewood Cliffs: Prentice-Hall, NJ, USA, 1996; ISBN 978-0134565675. [Google Scholar]
- Patra, S.; Sen, S.; Ray, G. Local stabilisation of uncertain linear time-invariant plant with bounded control inputs: Parametric h infinity loop-shaping approach. IET Control Theory Appl. 2012, 6, 1567–1576. [Google Scholar] [CrossRef]
- Katayama, S.; Yubai, K.; Hirai, J. Iterative design of the reduced-order weight and controller for the h infinity loop-shaping method under open-loop magnitude constraints for siso systems. IEEE Trans. Ind. Electron. 2009, 56, 3854–3863. [Google Scholar] [CrossRef]
- Boukhnifer, M.; Ferreira, A. H infinty loop shaping bilateral controller for a two-fingered tele-micromanipulation systemi. IEEE Trans. Control Syst. Technol. 2007, 15, 891–905. [Google Scholar] [CrossRef]
- Lee, T.-S.; Chiang, S.J.; Chang, J.-M. H infinity loop-shaping controller designs for the single-phase ups inverters. IEEE Trans. Power Electron. 2001, 16, 473–481. [Google Scholar] [CrossRef]
- McFarlane, D.; Glover, K. A loop-shaping design procedure using h infinty synthesis. IEEE Trans. Autom. Control 1992, 37, 759–769. [Google Scholar] [CrossRef]
- McFarlane, D.C.; Glover, K. Robust Controller Design Using Normalized Coprime Factor Plant Descriptions; Springer: Berlin/Heidelberg, Germany, 1990; Volume 138, ISBN 978-3-540-51851-8. [Google Scholar]
- Glover, K.; McFarlane, D. Robust stabilization of normalized coprime factor plant descriptions with H/sub infinity/-bounded uncertainty. IEEE Trans. Autom. Control 1989, 34, 821–830. [Google Scholar] [CrossRef]
- Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control: Analysis and Design, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-0470011683. [Google Scholar]
Sensor | Parameter | Value | Unit |
---|---|---|---|
Gyroscope | In-Run Bias Stability | 8 | deg/h |
Angle Random Walk | 0.12 | deg/h | |
Dynamic Range | ±100 | deg/s | |
−3 dB Bandwidth | 350 | Hz | |
Accelerometer | Nonlinearity | ±0.1 | % of FS |
Dynamic Range | ±5 | g | |
−3 dB Bandwidth | 350 | Hz |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Soltani, M.; Hussain, D.M.A.; Christensen, R.M. Design and Implementation of Attitude Stabilization System for Marine Satellite Tracking Antenna. Electronics 2018, 7, 398. https://doi.org/10.3390/electronics7120398
Wang Y, Soltani M, Hussain DMA, Christensen RM. Design and Implementation of Attitude Stabilization System for Marine Satellite Tracking Antenna. Electronics. 2018; 7(12):398. https://doi.org/10.3390/electronics7120398
Chicago/Turabian StyleWang, Yunlong, Mohsen Soltani, Dil Muhammad Akbar Hussain, and Roald M. Christensen. 2018. "Design and Implementation of Attitude Stabilization System for Marine Satellite Tracking Antenna" Electronics 7, no. 12: 398. https://doi.org/10.3390/electronics7120398
APA StyleWang, Y., Soltani, M., Hussain, D. M. A., & Christensen, R. M. (2018). Design and Implementation of Attitude Stabilization System for Marine Satellite Tracking Antenna. Electronics, 7(12), 398. https://doi.org/10.3390/electronics7120398