An Extreme Learning Machine Approach to Effective Energy Disaggregation
Abstract
:1. Introduction
2. Energy Disaggregation Problem
3. Related Work
4. Extreme Learning Machine in a Nutshell
4.1. The ELM Model
4.2. Shallow ELM
4.3. Hierarchical ELM
5. Experimental Setup & Results
5.1. Datasets
5.2. Performance Evaluation Criteria
5.3. ELM Architectural Details
5.4. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uteley, J.; Shorrock, L. Domestic Energy Fact File 2008. Available online: http://www.bre.co.uk/page.jsp?id=879 (accessed on 8 July 2018).
- EIA Energy Consumption Report. Available online: https://www.eia.gov/totalenergy/data/annual/pdf/sec2.pdf (accessed on 8 July 2018).
- EU Energy Consumption. Available online: http://www.eea.europa.eu/data-and-maps/figures/final-energy-consumption-by-sector-eu-27 (accessed on 8 July 2018).
- EIA Residential Report. Available online: https://www.eia.gov/consumption/residential/index.php (accessed on 8 July 2018).
- Meyers, R.J.; Williams, E.D.; Matthews, H.S. Scoping the potential of monitoring and control technologies to reduce energy use in homes. Energy Build. 2010, 42, 563–569. [Google Scholar] [CrossRef]
- Darby, S. The Effectiveness of Feedback on Energy Consumption: A Review for DEFRA of the Literature on Metering. 2006. Available online: https://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdf (accessed on 8 July 2018).
- Abrahamse, W.; Steg, L.; Vlek, C.; Rothengatter, T. A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 2005, 25, 273–291. [Google Scholar] [CrossRef]
- Yu, L.; Li, H.; Feng, X.; Duan, J. Nonintrusive appliance load monitoring for smart homes: recent advances and future issues. IEEE Instrum. Meas. Mag. 2016, 19, 56–62. [Google Scholar] [CrossRef]
- Soetedjo, A.; Nakhoda, Y.I.; Saleh, C. Embedded Fuzzy Logic Controller and Wireless Communication for Home Energy Management Systems. Electronics 2018, 7, 189. [Google Scholar] [CrossRef]
- Issi, F.; Kaplan, O. The Determination of Load Profiles and Power Consumptions of Home Appliances. Energies 2018, 11, 607. [Google Scholar] [CrossRef]
- Manivannan, M.; Najafi, B.; Rinaldi, F. Machine Learning-Based Short-Term Prediction of Air-Conditioning Load through Smart Meter Analytics. Energies 2017, 10, 1905. [Google Scholar] [CrossRef]
- Jain, R.K.; Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl. Energy 2014, 123, 168–178. [Google Scholar] [CrossRef]
- Paterson, G.; Mumovic, D.; Das, P.; Kimpian, J. Energy use predictions with machine learning during architectural concept design. Sci. Technol. Built Environ. 2017, 23, 1036–1048. [Google Scholar] [CrossRef] [Green Version]
- Karatasou, S.; Santamouris, M.; Geros, V. Modeling and predicting building’s energy use with artificial neural networks: Methods and results. Energy Build. 2006, 38, 949–958. [Google Scholar] [CrossRef]
- Hart, G.W. Nonintrusive appliance load monitoring. Proc. IEEE 1992, 80, 1870–1891. [Google Scholar] [CrossRef]
- Zeifman, M.; Roth, K. Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans. Consum. Electron. 2011, 57, 76–84. [Google Scholar] [CrossRef]
- Zoha, A.; Gluhak, A.; Imran, M.A.; Rajasegarar, S. Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 2012, 12, 16838–16866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-H.; Lian, K.-L.; Su, Y.-C.; Lee, W.-J. Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification. IEEE Trans. Ind. Appl. 2014, 50, 2081–2089. [Google Scholar] [CrossRef]
- Haq, A.U.; Jacobsen, H.-A. Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review. Energies 2018, 11, 189. [Google Scholar] [CrossRef]
- Meehan, P.; McArdle, C.; Daniels, S. An Efficient, Scalable Time-Frequency Method for Tracking Energy Usage of Domestic Appliances Using a Two-Step Classification Algorithm. Energies 2014, 7, 7041–7066. [Google Scholar] [CrossRef] [Green Version]
- Kwak, Y.; Hwang, J.; Lee, T. Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building. Energies 2018, 11, 1008. [Google Scholar] [CrossRef]
- Norford, L.K.; Mabey, N. Non-Intrusive Electric Load Monitoring in Commercial Buildings. In Proceedings of the Eighth Symposium on Improving Building Systems in Hot and Humid Climates, Dallas, TX, USA, 13–14 May 1992; pp. 133–140. [Google Scholar]
- Zia, T.; Bruckner, D.; Zaidi, A.A. Hidden Markov Model Based Procedure for Identifying Household Electric Loads. In Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011; pp. 3218–3322. [Google Scholar]
- Onoda, T.; Rätsch, G.; Müller, K.R. Applying support vector machines and boosting to a non-intrusive monitoring system for household electric appliances with inverters. In Proceedings of the Second ICSC Symposium on Neural Computation, Berlin, Germany, 23–26 May 2000. [Google Scholar]
- Fomby, T.B.; Barber, T. K-Nearest Neighbors Algorithm: Prediction and Classification; Southern Methodist University: Dallas, TX, USA, 2008; pp. 1–5. [Google Scholar]
- Gomes, L.; Fernandes, F.; Sousa, T.; Silva, M.; Morais, H.; Vale, Z.; Ramos, C. Contextual intelligent load management with ANN adaptive learning module. In Proceedings of the 16th International Conference on Intelligent System Application to Power Systems (ISAP 2011), Hersonissos, Greece, 25–28 September 2011. [Google Scholar] [CrossRef]
- Kelly, J.; Knottenbelt, W. Neural NILM: Deep neural networks applied to energy disaggregation. In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul, Korea, 4–5 November 2015; ACM: New York, NY, USA, 2015; pp. 55–64. [Google Scholar]
- Ruzzelli, A.G.; Nicolas, C.; Schoofs, A.; O’Hare, G.M. Real-time recognition and profiling of appliances through a single electricity sensor. In Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Boston, MA, USA, 21–25 June 2010. [Google Scholar] [CrossRef]
- Nalmpantis, C.; Vrakas, D. Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparison. Artif. Intell. Rev. 2018. [Google Scholar] [CrossRef]
- Zeifman, M. Disaggregation of home energy display data using probabilistic approach. IEEE Trans. Consum. Electron. 2012, 58, 23–31. [Google Scholar] [CrossRef]
- Bengio, Y. Learning deep architectures for AI. Found Trends Mach. Found. Trends Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Hinton, G.E.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Siniscalchi, S.M.; Salerno, V.M. Adaptation to new microphones using artificial neural networks with trainable activation functions. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Mauch, L.; Yang, B. A new approach for supervised power disaggregation by using a deep recurrent LSTM network. In Proceedings of the 3rd IEEE Global Conference on Signal and Information Processing, Orlando, FL, USA, 14–16 December 2015; pp. 63–67. [Google Scholar]
- Zhang, C.; Zhong, M.; Wang, Z.; Goddard, N.; Sutton, C. Sequence-to-point learning with neural networks for nonintrusive load monitoring. In Proceedings of the AAAI-18: Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Huang, G.-B. An insight into extreme learning machines: random neurons, random features and kernels. Cognit. Comput. 2014, 6, 376–390. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, Y.; Gu, J.J.; Liu, H. An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans. Cybern. 2017, 47, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Deng, C.; Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, C.; Huang, W.; Zhang, J. Object classification and grasp planning using visual and tactile sensing. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 969–979. [Google Scholar] [CrossRef]
- Kasun, L.L.C.; Zhou, H.; Huang, G.-B.; Vong, C.M. Representational learning with ELMs for big data. IEEE Intell. Syst. 2013, 28, 31–34. [Google Scholar]
- Zhao, W.; Beach, T.H.; Rezgui, Y. Optimization of potable water distribution and wastewater collection networks: A systematic review and future research directions. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 659–681. [Google Scholar] [CrossRef]
- Wang, D.; Bischof, L.; Lagerstrom, R.; Hilsenstein, V.; Hornabrook, A.; Hornabrook, G. Automated Opal Grading by Imaging and Statistical Learning. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 185–201. [Google Scholar] [CrossRef]
- Liu, D.; Wei, Q.; Yan, P. Generalized policy iteration adaptive dynamic programming for discrete time nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1577–1591. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Knottenbelt, W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2015, 2, 150007. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Marwah, M.; Arlitt, M.; Lyon, G.; Han, J. Unsupervised disaggregation of low frequency power measurements. In Proceedings of the 2011 SIAM International Conference on Data Mining, Mesa, AZ, USA, 28–30 April 2011; pp. 747–758. [Google Scholar]
- Kolter, J.Z.; Johnson, M.J. Redd: A public data set for energy disaggregation research. In Proceedings of the Workshop on Data Mining Applications in Sustainability, San Diego, CA, USA, 21 August 2011. [Google Scholar]
- Kolter, J.Z.; Jaakkola, T. Approximate inference in additive factorial HMMs with application to energy disaggregation. In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS), La Palma, Canary Islands, Spain, 21–23 April 2012; pp. 1472–1482. [Google Scholar]
- Parson, O.; Ghosh, S.; Weal, M.; Rogers, A. Using hidden Markov models for iterative non-intrusive appliance monitoring. In Proceedings of the Neural Information Processing Systems workshop on Machine Learning for Sustainability, Sierra Nevada, Spain, 16–17 December 2011. [Google Scholar]
- Parson, O.; Ghosh, S.; Weal, M. Rogers, Non-intrusive load monitoring using prior models of general appliance types. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; AAAI Press: Palo Alto, CA, USA, 2012; pp. 356–362. [Google Scholar]
- Egarter, D.; Bhuvana, V.P.; Elmenreich, W. PALDi: online load disaggregation via particle filtering. IEEE Trans. Instrum. Meas. 2015, 64, 467–477. [Google Scholar] [CrossRef]
- Paradiso, F.; Paganelli, F.; Giuli, D.; Capobianco, S. Context-based energy disaggregation in smart homes. Future Internet 2016, 8, 4. [Google Scholar] [CrossRef]
- Aiad, M.; Lee, P.H. Unsupervised approach for load disaggregation with devices interactions. Energy Build. 2016, 116, 96–103. [Google Scholar] [CrossRef]
- Makonin, S.; Popowich, F.; Bajic, I.V.; Gill, B. ; Bartram, L. Exploiting HMM sparsity to perform online real- time nonintrusive load monitoring. IEEE Trans. Smart Grid 2016, 7, 2575–2585. [Google Scholar] [CrossRef]
- Lange, H.; Bergés, M. The neural energy decoder: energy disaggregation by combining binary subcomponents. In Proceedings of the NILM2016 3rd International Workshop on Non-Intrusive Load Monitoring, Vancouver Canada, 14–15 May 2016. [Google Scholar]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Bonfigli, R.; Squartini, S.; Fagiani, M.; Piazza, F. Unsupervised algorithms for non-intrusive load monitoring: An up-to-date overview. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015. [Google Scholar] [CrossRef]
- Zhao, B.; Stankovic, L.; Stankovic, V. On a Training-Less Solution for Non-Intrusive Appliance Load Monitoring Using Graph Signal Processing. IEEE Access 2016, 4, 1784–1799. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, N.; Jia, B.; Peng, T. A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting. Energies 2018, 11, 1752. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Wang, J.; Gao, C. Research and Application of a Hybrid Wind Energy Forecasting System Based on Data Processing and an Optimized Extreme Learning Machine. Energies 2018, 11, 1712. [Google Scholar] [CrossRef]
- Chin, C.S.; Gao, Z. State-of-Charge Estimation of Battery Pack under Varying Ambient Temperature Using an Adaptive Sequential Extreme Learning Machine. Energies 2018, 11, 711. [Google Scholar] [CrossRef]
- Collotta, M.; Pau, G.; Salerno, V.M.; Scatà, G. A fuzzy based algorithm to Manage Power Consumption in Industrial Wireless Sensor Networks. In Proceedings of the 2011 9th IEEE International Conference on Industrial Informatics, Lisbon, Portugal, 26–29 July 2011. [Google Scholar] [CrossRef]
Timestamp (20 min) | Total Consumption | Oven | TV | Dishwasher | Laptop | Others |
---|---|---|---|---|---|---|
t0 | 540 | 0 | 130 | 390 | 20 | 0 |
t1 | 540 | 0 | 130 | 390 | 20 | 0 |
t2 | 600 | 80 | 0 | 390 | 50 | 80 |
t3 | 500 | 80 | 120 | 300 | 50 | 50 |
t4 | 800 | 450 | 0 | 300 | 50 | 0 |
t5 | 800 | 450 | 0 | 300 | 50 | 0 |
t6 | 750 | 450 | 0 | 300 | 0 | 0 |
t7 | 830 | 450 | 80 | 300 | 0 | 0 |
t8 | 750 | 450 | 0 | 300 | 0 | 0 |
… | … | … | … | … | … | … |
Appliance | Training | Testing |
---|---|---|
Kettle | 1, 2, 3, 4 | 5 |
Fridge | 1, 2, 4 | 5 |
Washing Machine | 1, 5 | 2 |
Microwave | 1, 2 | 5 |
Dish washer | 1, 2 | 5 |
Technique | Appliance | F1 | P | R | A | RET | TECA | MAE |
---|---|---|---|---|---|---|---|---|
CO | Kettle | 0.31 | 0.45 | 0.25 | 0.99 | 0.43 | 0.93 | 65 |
Dish Washer | 0.11 | 0.07 | 0.50 | 0.69 | 0.28 | 0.90 | 75 | |
Fridge | 0.52 | 0.50 | 0.54 | 0.61 | 0.26 | 0.94 | 50 | |
Microwave | 0.33 | 0.24 | 0.70 | 0.98 | 0.85 | 0.92 | 68 | |
Washing Machine | 0.13 | 0.08 | 0.56 | 0.69 | 0.65 | 0.92 | 88 | |
FHMM | Kettle | 0.28 | 0.30 | 0.28 | 0.99 | 0.57 | 0.91 | 82 |
Dish Washer | 0.08 | 0.04 | 0.78 | 0.37 | 0.66 | 0.85 | 111 | |
Fridge | 0.47 | 0.39 | 0.63 | 0.46 | 0.50 | 0.91 | 69 | |
Microwave | 0.43 | 0.35 | 0.69 | 0.99 | 0.80 | 0.93 | 54 | |
Washing Machine | 0.11 | 0.06 | 0.87 | 0.39 | 0.76 | 0.88 | 138 | |
Autoencoder | Kettle | 0.48 | 1.00 | 0.39 | 0.99 | 0.02 | 0.98 | 16 |
Dish Washer | 0.66 | 0.45 | 0.99 | 0.95 | –0.34 | 0.97 | 21 | |
Fridge | 0.81 | 0.83 | 0.79 | 0.85 | –0.35 | 0.97 | 25 | |
Microwave | 0.62 | 0.50 | 0.86 | 0.99 | –0.06 | 0.99 | 13 | |
Washing Machine | 0.25 | 0.15 | 0.99 | 0.76 | 0.18 | 0.96 | 44 | |
LSTM | Kettle | 0.71 | 0.91 | 0.63 | 1.00 | 0.36 | 0.98 | 23 |
Dish Washer | 0.06 | 0.03 | 0.63 | 0.35 | 0.76 | 0.83 | 130 | |
Fridge | 0.69 | 0.71 | 0.67 | 0.76 | –0.22 | 0.96 | 34 | |
Microwave | 0.42 | 0.28 | 0.92 | 0.98 | 0.50 | 0.97 | 22 | |
Washing Machine | 0.09 | 0.05 | 0.62 | 0.31 | 0.73 | 0.88 | 133 | |
Shallow ELM | Kettle | 0.27 | 0.23 | 0.24 | 0.99 | 0.58 | 0.91 | 81 |
Dish Washer | 0.09 | 0.06 | 0.81 | 0.33 | 0.62 | 0.85 | 112 | |
Fridge | 0.42 | 0.23 | 0.67 | 0.47 | 0.48 | 0.92 | 68 | |
Microwave | 0.41 | 0.45 | 0.71 | 0.98 | 0.81 | 0.90 | 52 | |
Washing Machine | 0.15 | 0.12 | 0.82 | 0.42 | 0.72 | 0.82 | 137 | |
H-ELM | Kettle | 0.72 | 1.00 | 0.70 | 1.00 | 0.01 | 0.98 | 15 |
Dish Washer | 0.75 | 0.89 | 0.99 | 0.98 | –0.54 | 0.98 | 19 | |
Fridge | 0.89 | 0.88 | 0.80 | 0.88 | –0.38 | 0.98 | 20 | |
Microwave | 0.66 | 0.52 | 0.87 | 0.99 | –0.05 | 0.99 | 12 | |
Washing Machine | 0.50 | 0.73 | 0.99 | 0.76 | 0.09 | 0.97 | 27 |
Technique | Appliance | F1 | P | R | A | RET | TECA | MAE |
---|---|---|---|---|---|---|---|---|
CO | Kettle | 0.31 | 0.23 | 0.46 | 0.99 | 0.85 | 0.94 | 73 |
Dish Washer | 0.11 | 0.06 | 0.67 | 0.64 | 0.62 | 0.94 | 74 | |
Fridge | 0.35 | 0.30 | 0.41 | 0.45 | 0.37 | 0.94 | 73 | |
Microwave | 0.05 | 0.03 | 0.35 | 0.98 | 0.97 | 0.93 | 89 | |
Washing Machine | 0.10 | 0.06 | 0.48 | 0.88 | 0.73 | 0.93 | 39 | |
FHMM | Kettle | 0.19 | 0.14 | 0.29 | 0.99 | 0.88 | 0.92 | 98 |
Dish Washer | 0.05 | 0.03 | 0.49 | 0.33 | 0.75 | 0.91 | 110 | |
Fridge | 0.55 | 0.40 | 0.86 | 0.50 | 0.57 | 0.94 | 67 | |
Microwave | 0.01 | 0.01 | 0.34 | 0.91 | 0.99 | 0.84 | 195 | |
Washing Machine | 0.08 | 0.04 | 0.64 | 0.79 | 0.86 | 0.88 | 67 | |
Autoencoder | Kettle | 0.93 | 1.00 | 0.87 | 1.00 | 0.13 | 1.00 | 6 |
Dish Washer | 0.44 | 0.29 | 0.99 | 0.92 | –0.33 | 0.98 | 24 | |
Fridge | 0.87 | 0.85 | 0.88 | 0.90 | –0.38 | 0.98 | 26 | |
Microwave | 0.26 | 0.15 | 0.94 | 0.99 | 0.73 | 0.99 | 9 | |
Washing Machine | 0.13 | 0.07 | 1.00 | 0.82 | 0.48 | 0.96 | 24 | |
LSTM | Kettle | 0.93 | 0.96 | 0.91 | 1.00 | 0.57 | 0.99 | 16 |
Dish Washer | 0.08 | 0.04 | 0.87 | 0.30 | 0.87 | 0.86 | 168 | |
Fridge | 0.74 | 0.71 | 0.77 | 0.81 | –0.25 | 0.97 | 36 | |
Microwave | 0.13 | 0.07 | 0.99 | 0.98 | 0.88 | 0.98 | 20 | |
Washing Machine | 0.03 | 0.01 | 0.73 | 0.23 | 0.91 | 0.81 | 109 | |
H-ELM | Kettle | 0.95 | 1.00 | 0.92 | 1.00 | 0.10 | 1.00 | 4 |
Dish Washer | 0.55 | 0.35 | 1.00 | 1.00 | –0.28 | 0.98 | 22 | |
Fridge | 0.89 | 0.90 | 0.92 | 0.94 | –0.22 | 0.98 | 23 | |
Microwave | 0.36 | 0.32 | 0.98 | 0.99 | 0.65 | 0.99 | 7 | |
Washing Machine | 0.43 | 0.10 | 1.00 | 0.84 | 0.51 | 0.97 | 21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salerno, V.M.; Rabbeni, G. An Extreme Learning Machine Approach to Effective Energy Disaggregation. Electronics 2018, 7, 235. https://doi.org/10.3390/electronics7100235
Salerno VM, Rabbeni G. An Extreme Learning Machine Approach to Effective Energy Disaggregation. Electronics. 2018; 7(10):235. https://doi.org/10.3390/electronics7100235
Chicago/Turabian StyleSalerno, Valerio Mario, and Graziella Rabbeni. 2018. "An Extreme Learning Machine Approach to Effective Energy Disaggregation" Electronics 7, no. 10: 235. https://doi.org/10.3390/electronics7100235
APA StyleSalerno, V. M., & Rabbeni, G. (2018). An Extreme Learning Machine Approach to Effective Energy Disaggregation. Electronics, 7(10), 235. https://doi.org/10.3390/electronics7100235