High-Throughput Control-Data Acquisition for Multicore MCU-Based Real-Time Control Systems Using Double Buffering over Ethernet
Abstract
1. Introduction
2. Related Works
3. Single- and Double-Buffering Algorithms
4. Data Acquisition Method Design
4.1. Overall Structure and Operation
4.2. Using Single-Buffering Algorithm
4.3. Using Double-Buffering Algorithm
5. Experiment
5.1. Experimental Setup
5.2. Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pu, D.; Sheng, X.; Zhang, W.; Ding, H. An Application of Real-time Operating System in High Speed and High Precision Motion Control Systems. In Proceedings of the 2007 IEEE International Conference on Automation Science and Engineering, Scottsdale, AZ, USA, 22–25 September 2007; pp. 997–1001. [Google Scholar] [CrossRef]
- Li, T.; Fujimoto, Y. Control System with High-Speed and Real-Time Communication Links. IEEE Trans. Ind. Electron. 2008, 55, 1548–1557. [Google Scholar] [CrossRef]
- Menghal, P.M.; Laxmi, A.J. Real time control of electrical machine drives: A review. In Proceedings of the 2010 International Conference on Power, Control and Embedded Systems, Allahabad, India, 29 November–1 December 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Baweja, G.; Ouyang, B. Data acquisition approach for real-time equipment monitoring and control. In Proceedings of the 13th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Advancing the Science and Technology of Semiconductor Manufacturing. ASMC 2002 (Cat. No.02CH37259), Boston, MA, USA, 30 April–2 May 2002; pp. 223–227. [Google Scholar] [CrossRef]
- Di Paolo Emilio, M. Embedded Systems Design for High-Speed Data Acquisition and Control; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, H.; Xu, C.; Zhou, X.; Liu, Z.; Zhao, D.; Lin, J.; Wu, G. A Real-Time Data Acquisition System for Single-Band Bathymetric LiDAR. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5702721. [Google Scholar] [CrossRef]
- Dai, X.; Gao, Z. From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis. IEEE Trans. Ind. Inform. 2013, 9, 2226–2238. [Google Scholar] [CrossRef]
- Wu, T.; Chen, S.; Wu, P. Intelligent fault diagnosis system based on big data. J. Eng. 2019, 2019, 8980–8985. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, D.; del Olmo, J.; Poza, J.; Garramiola, F.; Madina, P. Data-Driven Fault Diagnosis for Electric Drives: A Review. Sensors 2021, 21, 4024. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.L.M.; Lima, J.G.; Torres, N.N.S.; Afonso, J.A.; Lopes, S.F.; Carmo, J.P.P.d.; Hartmann, L.V.; Souto, C.R.; Salvadori, F.; Ando Junior, O.H. Open-Source Data Logger System for Real-Time Monitoring and Fault Detection in Bench Testing. Inventions 2024, 9, 120. [Google Scholar] [CrossRef]
- Danielis, P.; Skodzik, J.; Altmann, V.; Schweissguth, E.B.; Golatowski, F.; Timmermann, D.; Schacht, J. Survey on real-time communication via ethernet in industrial automation environments. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Mitsubishi Electric. Mitsubishi Electric ADVANCE Vol.157 “Communication Technology and IoT”. Available online: https://www.mitsubishielectric.com/advance-magazine/earlierissues/pdf/157_complete.pdf (accessed on 8 December 2025).
- Zhang, T.; Wang, G.; Xue, C.; Wang, J.; Nixon, M.; Han, S. Time-Sensitive Networking (TSN) for Industrial Automation: Current Advances and Future Directions. ACM Comput. Surv. 2024, 57, 30:1–30:38. [Google Scholar] [CrossRef]
- Texas Instruments. TMS320F2838x Real-Time Microcontrollers with Connectivity Manager Datasheet (Rev. E). Available online: https://www.ti.com/lit/ds/symlink/tms320f28388d.pdf (accessed on 8 December 2025).
- Renesas. Ethernet RZ/N1D-DB Quick Start Guide. Available online: https://www.renesas.com/en/document/qsg/connect-it-ethernet-rzn1d-quickstartguide (accessed on 8 December 2025).
- Laqua, H.; Niedermeyer, H.; Willmann, I. Ethernet-based real-time control data bus. IEEE Trans. Nucl. Sci. 2002, 49, 478–482. [Google Scholar] [CrossRef]
- Porobic, V.B.; Marcetic, D.P.; Katic, V.A. Data logging in the electrical drives. In Proceedings of the MELECON 2008-The 14th IEEE Mediterranean Electrotechnical Conference, Ajaccio, France, 5–7 May 2008; pp. 490–495. [Google Scholar] [CrossRef]
- Kouřil, D.; Bača, J.; Sobek, M.; Kuchař, M.; Strossa, J. Data Acquisition System for the Modern Induction Motor Drive applications. In Proceedings of the 2020 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, Czech Republic, 19–21 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Tran, D.M.; Choi, J.Y. A Real-Time Data Storage Method for AC Servo Motor Drives Using Micro SD Card. IEEE Access 2023, 11, 121470–121481. [Google Scholar] [CrossRef]
- Mahzan, N.N.; Omar, A.M.; Mohammad Noor, S.Z.; Mohd Rodzi, M.Z. Design of data logger with multiple SD cards. In Proceedings of the 2013 IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, 18–20 November 2013; pp. 175–180. [Google Scholar] [CrossRef]
- Mahendra, O.; Syamsi, D. Design of a dual-microcontroller scheme to overcome the freeze problem for a smart data logger. In Proceedings of the 2014 2nd International Conference on Information and Communication Technology (ICoICT), Bandung, Indonesia, 28–30 May 2014; pp. 314–319. [Google Scholar] [CrossRef]
- Bai, Y.W.; Liu, C.C. The performance improvement of a photo card reader by the use of a high-integration chip solution with double FIFO buffers. IEEE Trans. Consum. Electron. 2005, 51, 329–334. [Google Scholar] [CrossRef]
- Zinner, C.; Kubinger, W. ROS-DMA: A DMA Double Buffering Method for Embedded Image Processing with Resource Optimized Slicing. In Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06), San Jose, CA, USA, 4–7 April 2006; pp. 361–372. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, L.; Yan, X.; Yang, X. A Double-Buffering Strategy for the SRF management in the Imagine Stream Processor. In Proceedings of the 2008 The 9th International Conference for Young Computer Scientists, Zhangjiajie, China, 18–21 November 2008; pp. 160–165. [Google Scholar] [CrossRef]
- Li, J.; Han, K.; Hong, S.; Luo, S.; Dong, Z.; Lu, P. A prefetching method with Double-Buffer for multimedia streaming servers. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 16–18 December 2011; pp. 1485–1489. [Google Scholar] [CrossRef]






| Parameter | Value | Unit |
|---|---|---|
| Architecture | C28x | - |
| Frequency | 200 | MHz |
| Flash memory | 512 | kB |
| CPU1 to CM shared RAM | 4 | kB |
| Total RAM | 338 | kB |
| Total processing | 925 | MIPS |
| Parameter | Value | Unit |
|---|---|---|
| Architecture | ARM Cortex-M4 | - |
| Frequency | 125 | MHz |
| Flash memory | 512 | kB |
| CPU1 to CM shared RAM | 4 | kB |
| Total RAM | 96 | kB |
| Ethernet Frame Size (bytes) | 300 | 400 | 500 | 531 | 600 | 700 | 736 | |
|---|---|---|---|---|---|---|---|---|
| Ethernet throughput (Mbps) | Method 1 (Single-buffering, Figure 3) | 38.4 | 51.2 | 64.0 | 68.0 | RC | RC | RC |
| Method 2 (Single-buffering, Figure 4) | 19.2 | 25.6 | 32.0 | 34.0 | 38.4 | 44.8 | 47.1 | |
| Method 3 (Double-buffering, Figure 5) | 38.4 | 51.2 | 64.0 | 68.0 | 76.8 | 89.6 | 94.2 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lee, S.-H.; Tran, D.M.; Choi, J.-Y. High-Throughput Control-Data Acquisition for Multicore MCU-Based Real-Time Control Systems Using Double Buffering over Ethernet. Electronics 2026, 15, 469. https://doi.org/10.3390/electronics15020469
Lee S-H, Tran DM, Choi J-Y. High-Throughput Control-Data Acquisition for Multicore MCU-Based Real-Time Control Systems Using Double Buffering over Ethernet. Electronics. 2026; 15(2):469. https://doi.org/10.3390/electronics15020469
Chicago/Turabian StyleLee, Seung-Hun, Duc M. Tran, and Joon-Young Choi. 2026. "High-Throughput Control-Data Acquisition for Multicore MCU-Based Real-Time Control Systems Using Double Buffering over Ethernet" Electronics 15, no. 2: 469. https://doi.org/10.3390/electronics15020469
APA StyleLee, S.-H., Tran, D. M., & Choi, J.-Y. (2026). High-Throughput Control-Data Acquisition for Multicore MCU-Based Real-Time Control Systems Using Double Buffering over Ethernet. Electronics, 15(2), 469. https://doi.org/10.3390/electronics15020469

