Design and Data-Efficient Optimization of a Dual-Band Microstrip Planar Yagi Antenna for Sub-6 GHz 5G and Cellular Vehicle-to-Everything Communication
Abstract
1. Introduction
2. Designing the Microstrip Planar Yagi Antenna
3. Optimization of the Microstrip Planar Yagi Antenna
3.1. Parametric Analysis of the Single-Band Antenna
3.2. Data Arrangement and Curve Fitting
- represents the electromagnetic simulation function that maps the geometry to a resulting frequency.
- f is the computed resonance frequency.
- is the resonance frequency of the band,
- represents the simulation function relating the input parameter to the corresponding resonance frequency.
- is the value of the input parameter for the sample,
- is the simulated resonance frequency for the band at sample j.
- is the degree of the polynomial,
- are the polynomial coefficients for the band.
3.3. Visualization of Current Distribution
3.4. Applicability and Comparison with Alternative Methods
4. Result Analysis of the Optimized Dual-Band Antenna
5. 3D Radiation Pattern of the Proposed Antenna with Vehicle Integration
6. RLC Equivalent Circuit Model of the Optimized Dual-Band Antenna
7. Comparative Analysis and Limitations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Parameter | Value (mm) | (MHz) | (MHz) | Parameter | Value (mm) | (MHz) | (MHz) |
|---|---|---|---|---|---|---|---|
| D1_L | 11.14 | 3504 | 6020 | D1_L | 16.2 | 3508 | 4864 |
| 12.15 | 3504 | 5956 | 17.21 | 3508 | 4736 | ||
| 13.16 | 3508 | 5760 | 18.22 | 3508 | 4628 | ||
| 14.17 | 3512 | 5172 | 20.25 | 3520 | 4410 | ||
| D1_S | 2.02 | 3476 | 6184 | D1_S | 3.14 | 3484 | 5928 |
| 2.13 | 3480 | 6160 | 3.24 | 3504 | N/A | ||
| 2.23 | 3480 | 6136 | 3.34 | 3504 | N/A | ||
| 2.33 | 3480 | 6116 | 3.44 | 3504 | 5908 | ||
| 2.43 | 3480 | 6092 | 3.54 | 3504 | 5892 | ||
| 2.53 | 3484 | 6072 | 3.64 | 3508 | 5872 | ||
| 2.63 | 3484 | 6052 | 3.75 | 3508 | 5852 | ||
| 2.73 | 3484 | 6032 | 3.85 | 3508 | 5832 | ||
| 2.83 | 3484 | 5996 | 3.95 | 3508 | 5812 | ||
| 2.94 | 3488 | 5952 | 4.05 | 3508 | 5792 | ||
| D2_L | 8.1 | 3480 | 5608 | D2_L | 19.23 | 3508 | 5876 |
| 9.11 | 3484 | 5600 | 20.25 | 3520 | 5848 | ||
| 10.12 | 3484 | 6120 | 21.26 | 3532 | 5828 | ||
| 11.14 | 3484 | 6144 | 22.27 | 3548 | 5808 | ||
| 12.15 | 3480 | 6136 | 23.28 | 3592 | 5792 | ||
| 13.16 | 3484 | 6104 | 24.29 | 3560 | 5780 | ||
| 14.17 | 3488 | 6064 | 25.31 | 3540 | 5768 | ||
| D2_S | 4.05 | 3412 | 6016 | D2_S | 6.68 | 3476 | 5936 |
| 4.25 | 3420 | 6012 | 6.88 | 3476 | 5928 | ||
| 4.45 | 3428 | 6008 | 7.09 | 3480 | 5920 | ||
| 4.66 | 3432 | 6008 | 7.29 | 3484 | 5912 | ||
| 4.86 | 3436 | 6000 | 7.49 | 3480 | 5896 | ||
| 5.06 | 3444 | 5996 | 7.69 | 3504 | 5900 | ||
| 5.26 | 3452 | 5992 | 7.9 | 3504 | 5892 | ||
| 5.47 | 3456 | 5984 | 8.1 | 3508 | 5884 | ||
| 5.67 | 3460 | 5976 | 8.3 | 3508 | 5872 | ||
| 5.87 | 3464 | 5972 | 8.5 | 3508 | N/A | ||
| 6.07 | 3468 | 5964 | 8.71 | 3508 | 5852 | ||
| 6.28 | 3468 | 5956 | 8.91 | 3512 | N/A | ||
| 6.48 | 3472 | 5948 | 9.11 | N/A | 5820 | ||
| D3_L | 8.1 | 3580 | 5880 | D3_L | 18.22 | 3548 | 5880 |
| 9.11 | 3580 | 5880 | 19.23 | 3544 | 5880 | ||
| 10.12 | 3580 | 5880 | 20.25 | 3536 | 5884 | ||
| 11.14 | 3576 | 5872 | 21.26 | 3524 | 5884 | ||
| 12.15 | 3572 | N/A | 23.28 | 3508 | 5884 | ||
| 13.16 | 3568 | 5872 | 24.29 | 3492 | 5884 | ||
| 14.17 | 3568 | 5876 | 25.31 | 3468 | 5884 | ||
| 15.18 | 3564 | 5876 | 26.32 | 3440 | 5884 | ||
| 16.2 | 3560 | 5872 | 27.33 | 3420 | N/A | ||
| 17.21 | 3556 | 5880 | 28.34 | 3396 | 5884 | ||
| D3_S | 10.12 | 3504 | 5872 | D3_S | 13.31 | 3500 | 5876 |
| 10.27 | 3504 | 5872 | 13.46 | 3500 | 5880 | ||
| 10.43 | 3504 | 5872 | 13.62 | 3500 | 5880 | ||
| 10.58 | 3504 | 5872 | 13.77 | 3500 | 5880 | ||
| 10.73 | 3504 | 5872 | 13.92 | 3500 | 5880 | ||
| 10.88 | 3504 | 5872 | 14.07 | 3500 | 5880 | ||
| 11.03 | 3504 | 5872 | 14.22 | 3500 | 5880 | ||
| 11.19 | 3500 | 5872 | 14.37 | 3500 | 5880 | ||
| 11.34 | 3500 | 5872 | 14.53 | 3500 | 5880 | ||
| 11.49 | 3500 | 5872 | 14.68 | 3500 | 5880 | ||
| 11.64 | 3500 | 5872 | 14.83 | 3500 | 5880 | ||
| 11.79 | 3500 | 5876 | 14.98 | 3504 | 5884 | ||
| 11.94 | 3500 | 5876 | 15.13 | 3504 | 5884 | ||
| 12.1 | 3500 | 5876 | 15.29 | 3504 | 5884 | ||
| 12.25 | 3500 | 5876 | 15.44 | 3504 | 5884 | ||
| 12.4 | 3500 | 5876 | 15.59 | 3504 | 5884 | ||
| 12.55 | 3500 | 5876 | 15.74 | 3504 | 5884 | ||
| 12.7 | 3500 | 5876 | 15.89 | 3504 | N/A | ||
| 12.86 | 3500 | 5876 | 16.04 | 3508 | N/A | ||
| 13.01 | 3500 | 5876 | 16.2 | 3508 | N/A |
References
- Elassy, M.; Al-Hattab, M.; Takruri, M.; Badawi, S. Intelligent transportation systems for sustainable smart cities. Transp. Eng. 2024, 16, 100252. [Google Scholar] [CrossRef]
- Autili, M.; Chen, L.; Englund, C.; Pompilio, C.; Tivoli, M. Cooperative intelligent transport systems: Choreography-based urban traffic coordination. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2088–2099. [Google Scholar] [CrossRef]
- Loke, S.W. Cooperative automated vehicles: A review of opportunities and challenges in socially intelligent vehicles beyond networking. IEEE Trans. Intell. Veh. 2019, 4, 509–518. [Google Scholar] [CrossRef]
- Research, A.M. Automotive V2X Market Size, Technology, Report 2021–2030—alliedmarketresearch.com. Available online: https://www.alliedmarketresearch.com/automotive-v2x-market-A07120 (accessed on 28 May 2024).
- Mir, Z.H.; Dreyer, N.; Kürner, T.; Filali, F. Investigation on cellular LTE C-V2X network serving vehicular data traffic in realistic urban scenarios. Future Gener. Comput. Syst. 2024, 161, 66–80. [Google Scholar] [CrossRef]
- Maglogiannis, V.; Naudts, D.; Hadiwardoyo, S.; Van Den Akker, D.; Marquez-Barja, J.; Moerman, I. Experimental V2X evaluation for C-V2X and ITS-G5 technologies in a real-life highway environment. IEEE Trans. Netw. Serv. Manag. 2021, 19, 1521–1538. [Google Scholar] [CrossRef]
- Abdel Hakeem, S.A.; Hady, A.A.; Kim, H. 5G-V2X: Standardization, architecture, use cases, network-slicing, and edge-computing. Wirel. Netw. 2020, 26, 6015–6041. [Google Scholar] [CrossRef]
- Saha, D.; Nawi, I.M.; Zakariya, M. Super low profile 5G mmWave highly isolated MIMO antenna with 360° pattern diversity for smart city IoT and vehicular communication. Results Eng. 2024, 24, 103209. [Google Scholar] [CrossRef]
- Weiland, T.; Timm, M.; Munteanu, I. A practical guide to 3-D simulation. IEEE Microw. Mag. 2008, 9, 62–75. [Google Scholar] [CrossRef]
- Alieldin, A.; Huang, Y.; Boyes, S.J.; Stanley, M.; Joseph, S.D.; Hua, Q.; Lei, D. A triple-band dual-polarized indoor base station antenna for 2G, 3G, 4G and sub-6 GHz 5G applications. IEEE Access 2018, 6, 49209–49216. [Google Scholar] [CrossRef]
- Akinsolu, M.O.; Mistry, K.K.; Liu, B.; Lazaridis, P.I.; Excell, P. Machine learning-assisted antenna design optimization: A review and the state-of-the-art. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Koziel, S.; Pietrenko-Dabrowska, A. Improved-efficacy EM-driven optimization of antenna structures using adaptive design specifications and variable-resolution models. IEEE Trans. Antennas Propag. 2023, 71, 1863–1874. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. On nature-inspired design optimization of antenna structures using variable-resolution EM models. Sci. Rep. 2023, 13, 8373. [Google Scholar] [CrossRef]
- Koziel, S.; Çalık, N.; Mahouti, P.; Belen, M.A. Low-cost and highly accurate behavioral modeling of antenna structures by means of knowledge-based domain-constrained deep learning surrogates. IEEE Trans. Antennas Propag. 2022, 71, 105–118. [Google Scholar] [CrossRef]
- Liu, Y.F.; Xiao, L.Y.; Liu, Q.H. Machine Learning-Based Design Scheme for Multifunctional Antenna Arrays with Reconfigurable Scattering Patterns. IEEE Trans. Antennas Propag. 2025, 73, 4535–4548. [Google Scholar] [CrossRef]
- Shereen, M.K.; Liu, X.; Wu, X. Support Vector Regression for Gain and S11 Prediction: A Low-Complexity Solution for Antenna Design. In Proceedings of the 2025 IEEE 20th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), St. John’s, NL, Canada, 20–23 July 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–4. [Google Scholar]
- Rahman, M.A.; Al-Bawri, S.S.; Larguech, S.; Alharbi, S.S.; Alsowail, S.; Jizat, N.M.; Islam, M.T. Metamaterial based tri-band compact MIMO antenna system for 5G IoT applications with machine learning performance verification. Sci. Rep. 2025, 15, 22866. [Google Scholar] [CrossRef]
- Nakmouche, M.F.; Deslandes, D.; Nedil, M.; Gagnon, G. Machine learning-aided design of defected ground structures for PRGW-based MIMO antennas. IEEE Trans. Antennas Propag. 2025, 73, 7450–7461. [Google Scholar] [CrossRef]
- Shereen, M.K.; Liu, X.; Wu, X.; Naseem, A.; Uzair, M. Deep learning-inspired linear regression technique for accurate microstrip antenna performance analysis. In Proceedings of the 2025 4th International Conference on Electronics Representation and Algorithm (ICERA), Yogyakarta, Indonesia, 12 June 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 42–47. [Google Scholar]
- Haque, M.A.; Ahammed, M.S.; Rahaman, M.S.A.; Ahmed, M.K.; Nahin, K.H.; Sawaran Singh, N.S.; Rahman, M.A.; Jaafar, J.; Al-Bawri, S.S. High Performance Quad Port Compact MIMO Antenna for 38 GHz 5G Application with Regression Machine Learning Prediction. J. Infrared Millimeter Terahertz Waves 2025, 46, 40. [Google Scholar] [CrossRef]
- Narayanaswamy, N.K.; Alzahrani, Y.; Penmatsa, K.K.V.; Pandey, A.; Dwivedi, A.K.; Singh, V.; Tolani, M. Machine learning aided tapered 4-port MIMO antenna for V2X communications with enhanced gain and isolation. IEEE Access 2025, 13, 32411–32423. [Google Scholar] [CrossRef]
- Tanti, H.A.; Datta, A.; Biswas, T.; Tripathi, A. Development of a machine learning-based radio source localization algorithm for tri-axial antenna configuration. J. Astrophys. Astron. 2025, 46, 5. [Google Scholar] [CrossRef]
- Gajbhiye, P.A.; Singh, S.P.; Sharma, M.K. Hybrid optimization framework for MIMO antenna design in wearable IoT applications using deep learning and bayesian method. Braz. J. Phys. 2025, 55, 3. [Google Scholar] [CrossRef]
- Alam, M.M.; Yusof, N.A.T.; Faudzi, A.A.M.; Tomal, M.R.I.; Haque, M.E.; Rahman, M.S. Machine learning-based approach for bandwidth and frequency prediction of circular SIW antenna. J. King Saud Univ.-Sci. 2025, 37, 9. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A.; Pankiewicz, B. On accelerated metaheuristic-based electromagnetic-driven design optimization of antenna structures using response features. Electronics 2024, 13, 383. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Efficient simulation-based global antenna optimization using characteristic point method and nature-inspired metaheuristics. IEEE Trans. Antennas Propag. 2024, 72, 3706–3717. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Expedited feature-based quasi-global optimization of multi-band antenna input characteristics with jacobian variability tracking. IEEE Access 2020, 8, 83907–83915. [Google Scholar] [CrossRef]
- Yu, X.; Weeber, J.C.; Markey, L.; Arocas, J.; Bouhelier, A.; Leray, A.; des Francs, G.C. Nano antenna-assisted quantum dots emission into high-index planar waveguide. Nanotechnology 2024, 35, 265201. [Google Scholar] [CrossRef]
- Barbano, N. Log periodic Yagi-Uda array. IEEE Trans. Antennas Propag. 1966, 14, 235–238. [Google Scholar] [CrossRef]
- Rehman, A.; Valentini, R.; Cinque, E.; Di Marco, P.; Santucci, F. On the Impact of Multiple Access Interference in LTE-V2X and NR-V2X Sidelink Communications. Sensors 2023, 23, 4901. [Google Scholar] [CrossRef]
- Ficzere, D.; Varga, P.; Wippelhauser, A.; Hejazi, H.; Csernyava, O.; Kovács, A.; Hegedűs, C. Large-Scale Cellular Vehicle-to-Everything Deployments Based on 5G—Critical Challenges, Solutions, and Vision towards 6G: A Survey. Sensors 2023, 23, 7031. [Google Scholar] [CrossRef]
- Pant, M.; Malviya, L. Design, developments, and applications of 5G antennas: A review. Int. J. Microw. Wirel. Technol. 2023, 15, 156–182. [Google Scholar] [CrossRef]
- Kihei, B.; Barclay, C.; Greaves-Taylor, J. 5.9 GHz Interference Resiliency for Connected Vehicle Equipment; Technical Report; Department of Transporation, Office of Performance-Based Management and Research: Atlanta, GA, USA, 2023. [Google Scholar]
- Boursianis, A.D.; Papadopoulou, M.S.; Pierezan, J.; Mariani, V.C.; Coelho, L.S.; Sarigiannidis, P.; Koulouridis, S.; Goudos, S.K. Multiband patch antenna design using nature-inspired optimization method. IEEE Open J. Antennas Propag. 2020, 2, 151–162. [Google Scholar] [CrossRef]
- Liu, Y.F.; Chang, T.H.; Hong, M.; Wu, Z.; So, A.M.C.; Jorswieck, E.A.; Yu, W. A survey of recent advances in optimization methods for wireless communications. IEEE J. Sel. Areas Commun. 2024, 42, 2992–3031. [Google Scholar] [CrossRef]
- Haque, M.A.; Zakariya, M.A.; Singh, N.S.S.; Rahman, M.A.; Paul, L.C. Parametric study of a dual-band quasi-Yagi antenna for LTE application. Bull. Electr. Eng. Inform. 2023, 12, 1513–1522. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Accelerated parameter tuning of antenna structures by means of response features and principal directions. IEEE Trans. Antennas Propag. 2023, 71, 8987–8999. [Google Scholar] [CrossRef]
- Caceci, M.S.; Cacheris, W.P. Fitting curves to data. Byte 1984, 9, 340–362. [Google Scholar]
- Lever, J.; Krzywinski, M.; Altman, N. Points of significance: Model selection and overfitting. Nat. Methods 2016, 13, 703–705. [Google Scholar] [CrossRef]
- Verma, R.K.; Srivastava, D.K. Optimization and parametric analysis of slotted microstrip antenna using particle swarm optimization and curve fitting. Int. J. Circuit Theory Appl. 2021, 49, 1868–1883. [Google Scholar] [CrossRef]
- El-Hakim, H.; Mohamed, H.A. synthesis of a multiband microstrip patch antenna for 5G wireless communications. J. Infrared Millimeter Terahertz Waves 2023, 44, 752–768. [Google Scholar] [CrossRef]
- You, C.J.; Liu, S.H.; Zhang, J.X.; Wang, X.; Li, Q.Y.; Yin, G.Q.; Wang, Z.G. Frequency-and pattern-reconfigurable antenna array with broadband tuning and wide scanning angles. IEEE Trans. Antennas Propag. 2023, 71, 5398–5403. [Google Scholar] [CrossRef]
- Freschi, F.; Giaccone, L.; Cirimele, V.; Solimene, L. Vehicle4em: A collection of car models for electromagnetic simulation. In Proceedings of the IEEE Wireless Power Transfer Conference and Expo (WPTCE), Rome, Italy, 3–6 June 2025. [Google Scholar]
- Sufian, M.A.; Hussain, N.; Abbas, A.; Lee, J.; Park, S.G.; Kim, N. Mutual coupling reduction of a circularly polarized MIMO antenna using parasitic elements and DGS for V2X communications. IEEE Access 2022, 10, 56388–56400. [Google Scholar] [CrossRef]
- Xing, X.Q.; Lu, W.J.; Ji, F.Y.; Zhu, L.; Zhu, H.B. Low-profile dual-resonant wideband backfire antenna for vehicle-to-everything applications. IEEE Trans. Veh. Technol. 2022, 71, 8330–8340. [Google Scholar] [CrossRef]
- Virothu, S.; Anuradha, M.S. Flexible CP diversity antenna for 5G cellular Vehicle-to-Everything applications. AEU-Int. J. Electron. Commun. 2022, 152, 154248. [Google Scholar] [CrossRef]



























| Parameter | (MHz) | (MHz) | |
|---|---|---|---|
| Director 1 | D1_L | 3504–3520 | 4410–6020 |
| 11 mm–21 mm | |||
| D1_S | 3476–3508 | 5792–6184 | |
| 2 mm–4 mm | |||
| Director 2 | D2_L | 3480–3592 | 5600–6144 |
| 8 mm–26 mm | |||
| D2_S | 3412–3512 | 5820–6016 | |
| 4 mm–9 mm | |||
| Director 3 | D3_L | 3396–3580 | 5872–5884 |
| 8 mm–29 mm | |||
| D3_S | 3500–3508 | 5872–5884 | |
| 10 mm–16 mm | |||
| Ref. | Method | Dataset Size Needed | Computational Cost | Strengths | Limitations |
|---|---|---|---|---|---|
| This Study | Polynomial Curve Fitting based Optimization (Proposed) | 128 samples | Low | Extremely data-efficient; easy to implement; analytic derivatives; | Requires careful selection of polynomial order; limited to interpolation; |
| [16] | Support Vector Machine (SVM) | 1456 samples | Moderate | Captures the overall trend; | Struggles predicting values for edge cases; |
| [21] | Gaussian Process Regression (GPR) | 66,000 samples | High | Excellent for smooth functions; built-in uncertainty estimates; | Scalability issues; expensive training for large datasets; |
| Ref. | Frequency (GHz) | Bandwidth (GHz) | Efficiency (%) | Peak Gain (dBi) | Size () |
|---|---|---|---|---|---|
| [46] | 3.5, 5.9 | 3.23–6.26 | 92 | 5.9 | 0.9 × 0.35 |
| [44] | 5.9 | 0.4 | 94 | 7.68 | 1.46 × 1.46 |
| [45] | 5, 6 | 4.77–6.31 | 93.2 | 4.2 | 3.93 × 2.95 |
| This Study | 3.5, 5.9 | 0.7, 0.9 | 90.1, 78.4 | 7.55, 4.45 | 0.44 × 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Saha, D.; Nawi, I.M. Design and Data-Efficient Optimization of a Dual-Band Microstrip Planar Yagi Antenna for Sub-6 GHz 5G and Cellular Vehicle-to-Everything Communication. Electronics 2026, 15, 23. https://doi.org/10.3390/electronics15010023
Saha D, Nawi IM. Design and Data-Efficient Optimization of a Dual-Band Microstrip Planar Yagi Antenna for Sub-6 GHz 5G and Cellular Vehicle-to-Everything Communication. Electronics. 2026; 15(1):23. https://doi.org/10.3390/electronics15010023
Chicago/Turabian StyleSaha, Dipon, and Illani Mohd Nawi. 2026. "Design and Data-Efficient Optimization of a Dual-Band Microstrip Planar Yagi Antenna for Sub-6 GHz 5G and Cellular Vehicle-to-Everything Communication" Electronics 15, no. 1: 23. https://doi.org/10.3390/electronics15010023
APA StyleSaha, D., & Nawi, I. M. (2026). Design and Data-Efficient Optimization of a Dual-Band Microstrip Planar Yagi Antenna for Sub-6 GHz 5G and Cellular Vehicle-to-Everything Communication. Electronics, 15(1), 23. https://doi.org/10.3390/electronics15010023

