Wi-Fi RSS Fingerprinting-Based Indoor Localization in Large Multi-Floor Buildings
Abstract
1. Introduction
2. Related Works
3. Materials and Methods
4. Results
4.1. Private Datasets
4.2. Public Datasets
4.2.1. Machine Learning Algorithms
4.2.2. Deep Learning Algorithms
4.2.3. Others
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IoT | Internet of Things |
| RSS | Received Signal Strength |
| CNN | Convolutional Neural Network |
| SAE | Stacked Autoencoder |
| CSI | Channel State Information |
| AP | Access Point |
| RP | Reference Point |
| VAP | Virtual Access Point |
| kNN | K-Nearest Neighbor |
| ELM | Extreme Learning Machine |
| UJI | UJIIndoorLoc Dataset |
| TUT | Tampere Dataset |
| UTS | UTSIndoorLoc Dataset |
| ML | Machine Learning |
| DL | Deep Learning |
| BA | Building Accuracy |
| FA | Floor Accuracy |
| RA | Room Accuracy |
| PE | Position Error |
| ILS | Indoor Location System |
| CILS | Collaborative Indoor Location System |
| RNN | Recurrent Neural Network |
| LSTM | Long Short-Term Memory |
| RF | Radio Frequency |
References
- Xia, S.; Liu, Y.; Yuan, G.; Zhu, M.; Wang, Z. Indoor fingerprint positioning based on Wi-Fi: An overview. ISPRS Int. J. Geo-Inf. 2017, 6, 135. [Google Scholar] [CrossRef]
- Shang, S.; Wang, L. Overview of WiFi fingerprinting-based indoor positioning. IET Commun. 2022, 16, 725–733. [Google Scholar] [CrossRef]
- Alhomayani, F.; Mahoor, M.H. Deep learning methods for fingerprint-based indoor positioning: A review. J. Locat. Based Serv. 2020, 14, 129–200. [Google Scholar] [CrossRef]
- Singh, N.; Choe, S.; Punmiya, R. Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview. IEEE Access 2021, 9, 127150–127174. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef]
- Oguntala, G.; Abd-Alhameed, R.; Jones, S.; Noras, J.; Patwary, M.; Rodriguez, J. Indoor location identification technologies for real-time IoT-based applications: An inclusive survey. Comput. Sci. Rev. 2018, 30, 55–79. [Google Scholar] [CrossRef]
- Pascacio, P.; Casteleyn, S.; Torres-Sospedra, J.; Lohan, E.S.; Nurmi, J. Collaborative indoor positioning systems: A systematic review. Sensors 2021, 21, 1002. [Google Scholar] [CrossRef]
- Subedi, S.; Pyun, J.-Y. A survey of smartphone-based indoor positioning system using RF-based wireless technologies. Sensors 2020, 20, 7230. [Google Scholar] [CrossRef]
- Ashraf, I.; Zikria, Y.B.; Garg, S.; Hur, S.; Park, Y.; Guizani, M. Enabling Technologies and Techniques for Floor Identification. ACM Comput. Surv. 2024, 57, 5. [Google Scholar] [CrossRef]
- Mostafa, S.; Harras, K.A.; Youssef, M. A Survey of Indoor Localization Systems for Multi-Floor Environments. IEEE Access 2025, 13, 146396–146432. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, M.; Wang, J.; Luo, H.; Sun, L.; Ma, Z.; Li, W.; Zhang, C.; Huang, R.; Li, X. Recent advances in floor positioning based on smartphone. Meas. J. Int. Meas. Confed. 2023, 214, 112813. [Google Scholar] [CrossRef]
- Retscher, G. Fundamental Concepts and Evolution of Wi-Fi User Localization: An Overview Based on Different Case Studies. Sensors 2020, 20, 5121. [Google Scholar] [CrossRef]
- He, S.; Chan, S.-H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Hossain, A.K.M.M.; Soh, W.-S. A survey of calibration-free indoor positioning systems. Comput. Commun. 2015, 66, 1–13. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, K.; Zhu, F.; Bu, J.; Dua, X. The State of the Art of Deep Learning-Based Wi-Fi Indoor Positioning: A Review. IEEE Sens. J. 2024, 24, 27076–27098. [Google Scholar] [CrossRef]
- Feng, X.; Nguyen, K.A.; Luo, Z. A Review of Open Access WiFi Fingerprinting Datasets for Indoor Positioning. IEEE Access 2024, 12, 167970–167989. [Google Scholar] [CrossRef]
- Feng, X.; Nguyen, K.A.; Luo, Z. A survey of deep learning approaches for WiFi-based indoor positioning. J. Inf. Telecommun. 2022, 6, 163–216. [Google Scholar] [CrossRef]
- Roy, P.; Chowdhury, C. A survey on ubiquitous WiFi-based indoor localization system for smartphone users from implementation perspectives. CCF Trans. Pervasive Comput. Interact. 2022, 4, 298–318. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Kim, I.; Choi, E.; Oh, H. Observation and motion models for indoor pedestrian tracking. In Proceedings of the 2012 2nd International Conference on Digital Information and Communication Technology and its Applications, DICTAP 2012, Bangkok, Thailand, 16–18 May 2012; pp. 482–485. [Google Scholar] [CrossRef]
- Zhou, R.; Sang, N. Enhanced wi-fi fingerprinting with building structure and user orientation. In Proceedings of the 2012 8th International Conference on Mobile Ad Hoc and Sensor Networks, MSN 2012, Chengdu, China, 14–16 December 2012; pp. 219–225. [Google Scholar] [CrossRef]
- Farshad, A.; Li, J.; Marina, M.K.; Garcia, F.J. A microscopic look at WiFi fingerprinting for indoor mobile phone localization in diverse environments. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2013, Montbeliard-Belfort, France, 28–31 October 2013. [Google Scholar] [CrossRef]
- Shrestha, S.; Talvitie, J.; Lohan, E.S. On the fingerprints dynamics in WLAN indoor localization. In Proceedings of the 2013 13th International Conference on ITS Telecommunications, ITST 2013, Tampere, Finland, 5–7 November 2013; pp. 122–126. [Google Scholar] [CrossRef]
- Campos, R.S.; Lovisolo, L.; de Campos, M.L.R. Search space reduction in DCM positioning using unsupervised clustering. In Proceedings of the 2013 10th Workshop on Positioning, Navigation and Communication (WPNC), Dresden, Germany, 20–21 March 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Han, D.; Jung, S.; Lee, M.; Yoon, G. Building a Practical Wi-Fi-Based Indoor Navigation System. IEEE Pervasive Comput. 2014, 13, 72–79. [Google Scholar] [CrossRef]
- Razavi, A.; Valkama, M.; Lohan, E.-S. K-means fingerprint clustering for low-complexity floor estimation in indoor mobile localization. In Proceedings of the 2015 IEEE Globecom Workshops, GC Wkshps 2015—Proceedings, San Diego, CA, USA, 6–10 December 2015. [Google Scholar] [CrossRef]
- Rahman, M.A.A.; Dashti, M.; Zhang, J. Floor determination for positioning in multi-story building. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC, Istanbul, Turkey, 6–9 April 2014; pp. 2540–2545. [Google Scholar] [CrossRef]
- Torres-Sospedra, J.; Montoliu, R.; Trilles, S.; Belmonte, Ó.; Huerta, J. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems. Expert Syst. Appl. 2015, 42, 9263–9278. [Google Scholar] [CrossRef]
- Wang, D. HILLS: Hierarchical Indoor Localization for Large-Scale Architectural Complex. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 1112–1121. [Google Scholar] [CrossRef]
- BelMannoubi, S.; Touati, H. Deep Neural Networks for Indoor Localization Using WiFi Fingerprints. In Proceedings of the 5th International Conference, MSPN 2019, Mohammedia, Morocco, 23–24 April 2019; pp. 247–258. [Google Scholar] [CrossRef]
- Vongsuteera, T.; Rojviboonchai, K. Adaptive Indoor Localization System for Large-Scale Area. IEEE Access 2021, 9, 8847–8865. [Google Scholar] [CrossRef]
- Shao, W.; Luo, H.; Zhao, F.; Tian, H.; Huang, J.; Crivello, A. Floor Identification in Large-Scale Environments with Wi-Fi Autonomous Block Models. IEEE Trans. Ind. Inform. 2022, 18, 847–858. [Google Scholar] [CrossRef]
- Wang, C.; Luo, J.; Liu, X.; He, X. Secure and Reliable Indoor Localization Based on Multitask Collaborative Learning for Large-Scale Buildings. IEEE Internet Things J. 2022, 9, 22291–22303. [Google Scholar] [CrossRef]
- Luckner, M.; Sowik, S.; Brida, P. Selection of Signal Sources Influence at Indoor Positioning System. IEEE Trans. Wirel. Commun. 2024, 23, 45–57. [Google Scholar] [CrossRef]
- Dwijaksara, M.H.; Darmawan, I.B.S.; Angelina, M.A.; Partogi, S.R.; Arfiansyah, L.; Wibisono, A. Low Overhead Wi-Fi Fingerprinting-based Indoor Positioning for Evacuation Support System during Disaster in Smart Campus. In Proceedings of the 2025 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia, 3–5 July 2025; pp. 181–187. [Google Scholar] [CrossRef]
- Torres-Sospedra, J.; Montoliu, R.; Martínez-Usó, A.; Avariento, J.P.; Arnau, T.J.; Benedito-Bordonau, M.; Huerta, J. UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Republic of Korea, 27–30 October 2014; pp. 261–270. [Google Scholar] [CrossRef]
- Lohan, E.S.; Torres-Sospedra, J.; Leppäkoski, H.; Richter, P.; Peng, Z.; Huerta, J. Wi-Fi crowdsourced fingerprinting dataset for indoor positioning. Data 2017, 2, 32. [Google Scholar] [CrossRef]
- Song, X.; Fan, X.; Xiang, C.; Ye, Q.; Liu, L.; Wang, Z.; He, X.; Yang, N.; Fang, G. A Novel Convolutional Neural Network Based Indoor Localization Framework With WiFi Fingerprinting. IEEE Access 2019, 7, 110698–110709. [Google Scholar] [CrossRef]
- Uddin, M.T.; Islam, M.M. Extremely randomized trees for Wi-Fi fingerprint-based indoor positioning. In Proceedings of the 2015 18th International Conference on Computer and Information Technology, ICCIT 2015, Dhaka, Bangladesh, 21–23 December 2015; pp. 105–110. [Google Scholar] [CrossRef]
- Nguyen, K.A. A performance guaranteed indoor positioning system using conformal prediction and the wifi signal strength. J. Inf. Telecommun. 2017, 1, 41–65. [Google Scholar] [CrossRef]
- Akram, B.A.; Akbar, A.H.; Shafiq, O. HybLoc: Hybrid Indoor Wi-Fi Localization Using Soft Clustering-Based Random Decision Forest Ensembles. IEEE Access 2018, 6, 38251–38272. [Google Scholar] [CrossRef]
- Zhou, C.; Wieser, A. CDM: Compound Dissimilarity Measure and an Application to Fingerprinting-Based Positioning. In Proceedings of the IPIN 2018—9th International Conference on Indoor Positioning and Indoor Navigation, Nantes, France, 24–27 September 2018. [Google Scholar] [CrossRef]
- Apostolo, G.H.; Sampaio, I.G.B.; Viterbo, J. Feature selection on database optimization for Wi-Fi fingerprint indoor positioning. Procedia Comput. Sci. 2019, 159, 251–260. [Google Scholar] [CrossRef]
- Pasha, M.W.; Umair, M.Y.; Mirza, A.; Rao, F.; Wakeel, A.; Akram, S.; Subhan, F.; Khan, W.Z. Enhanced fingerprinting based indoor positioning using machine learning. Comput. Mater. Contin. 2021, 69, 1631–1652. [Google Scholar] [CrossRef]
- Liu, S.Y.; De Lacerda, R.; Fiorina, J. WKNN indoor Wi-Fi localization method using k-means clustering based radio mapping. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Alitaleshi, A.; Jazayeriy, H.; Kazemitabar, S.J. WiFi Fingerprinting based Floor Detection with Hierarchical Extreme Learning Machine. In Proceedings of the 2020 10h International Conference on Computer and Knowledge Engineering, ICCKE 2020, Mashhad, Iran, 29–30 October 2020; pp. 113–117. [Google Scholar] [CrossRef]
- Alitaleshi, A.; Jazayeriy, H.; Kazemitabar, J. Affinity propagation clustering-aided two-label hierarchical extreme learning machine for Wi-Fi fingerprinting-based indoor positioning. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 3303–3317. [Google Scholar] [CrossRef]
- Singh, N.; Choe, S.; Punmiya, R.; Kaur, N. XGBLoc: XGBoost-Based Indoor Localization in Multi-Building Multi-Floor Environments. Sensors 2022, 22, 6629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fukunaga, H.; Ishizuka, R.; Li, T.; Tateno, S. Multi-floor Positioning Method based on RSSI in Wireless Sensor Networks. In Proceedings of the 2022 61st Annual Conference of the Society of Instrument and Control Engineers (SICE), Kumamoto, Japan, 6–9 September 2022; pp. 270–275. [Google Scholar] [CrossRef]
- Wu, X.; Hu, M.; Dong, G. A high available and strong generalization capability data-driven-based wireless fingerprint positioning model. In Proceedings of the 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 24–26 February 2023; pp. 1812–1819. [Google Scholar] [CrossRef]
- Agah, N.; Evans, B.; Meng, X.; Xu, H. A Local Machine Learning Approach for Fingerprint-based Indoor Localization. In Proceedings of the SoutheastCon 2023, Orlando, FL, USA, 1–16 April 2023; pp. 240–245. [Google Scholar] [CrossRef]
- Narasimman, S.C.; Alphones, A. DumbLoc: Dumb Indoor Localization Framework Using Wi-Fi Fingerprinting. IEEE Sens. J. 2024, 24, 14623–14630. [Google Scholar] [CrossRef]
- Shen, Q.; Cui, Y. WIFI Fingerprint Correction for Indoor Localization Based on Distance Metric Learning. IEEE Sens. J. 2024, 24, 36167–36177. [Google Scholar] [CrossRef]
- Ghoshal, S.; Saif, S.; Biswas, S. Optimizing Indoor Positioning: ANN-GD Fusion for Enhanced Accuracy in WiFi Fingerprint-Based Surveillance Systems. SN Comput. Sci. 2025, 6, 511. [Google Scholar] [CrossRef]
- Bleiweiss, A. A mobile indoor positioning system founded on convolutional extraction of learned WLAN fingerprints. In Proceedings of the ICPRAM 2016Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, Rome, Italy, 24–26 February 2016; pp. 214–223. [Google Scholar] [CrossRef]
- Song, X.; Fan, X.; He, X.; Xiang, C.; Ye, Q.; Huang, X.; Fang, G.; Chen, L.L.; Qin, J. CNNLoc: Deep-Learning Based Indoor Localization with WiFi Fingerprinting. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 589–595. [Google Scholar] [CrossRef]
- Laska, M.; Blankenbach, J. Multi-Task Neural Network for Position Estimation in Large-Scale Indoor Environments. IEEE Access 2022, 10, 26024–26032. [Google Scholar] [CrossRef]
- Quezada-Gaibor, D.; Torres-Sospedra, J.; Nurmi, J.; Koucheryavy, Y.; Huerta, J. Lightweight Hybrid CNN-ELM Model for Multi-building and Multi-floor Classification. In Proceedings of the 2022 International Conference on Localization and GNSS, ICL-GNSS 2022—Proceedings, Tampere, Finland, 7–9 June 2022. [Google Scholar] [CrossRef]
- Sonny, A.; Kumar, A. Fingerprint Image-Based Multi-Building 3D Indoor Wi-Fi Localization Using Convolutional Neural Networks. In Proceedings of the 2022 National Conference on Communications, NCC 2022, Mumbai, India, 24–27 May 2022; pp. 106–111. [Google Scholar] [CrossRef]
- Alitaleshi, A.; Jazayeriy, H.; Kazemitabar, J. EA-CNN: A smart indoor 3D positioning scheme based on Wi-Fi fingerprinting and deep learning. Eng. Appl. Artif. Intell. 2023, 117, 105509. [Google Scholar] [CrossRef]
- Gao, B.; Yang, F.; Cui, N.; Xiong, K.; Lu, Y.; Wang, Y. A Federated Learning Framework for Fingerprinting-Based Indoor Localization in Multibuilding and Multifloor Environments. IEEE Internet Things J. 2023, 10, 2615–2629. [Google Scholar] [CrossRef]
- Li, S.; Kim, K.S.; Tang, Z.; Smith, J.S. Stage-Wise and Hierarchical Training of Linked Deep Neural Networks for Large-Scale Multi-Building and Multi-Floor Indoor Localization Based on Wi-Fi Fingerprinting. In Proceedings of the 2023 11th International Symposium on Computing and Networking Workshops, CANDARW 2023, Matsue, Japan, 27–30 November 2023; pp. 63–68. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, Z.; Tian, C. Localization of Multi-Building Floors Based on Wavelet-CNN. In Proceedings of the 2023 6th International Conference on Artificial Intelligence and Pattern Recognition, Xiamen, China, 22–24 September 2023; pp. 373–380. [Google Scholar] [CrossRef]
- Kargar-Barzi, A.; Farahmand, E.; Chatrudi, N.T.; Mahani, A.; Shafique, M. An Edge-Based WiFi Fingerprinting Indoor Localization Using Convolutional Neural Network and Convolutional Auto-Encoder. IEEE Access 2024, 12, 85050–85060. [Google Scholar] [CrossRef]
- Arslantas, H.; Okdem, S. Indoor Localization With an Autoencoder-Based Convolutional Neural Network. IEEE Access 2024, 12, 46059–46066. [Google Scholar] [CrossRef]
- Neupane, I.; Shahrestani, S.; Ruan, C. Indoor Localization of Resource-Constrained IoT Devices Using Wi-Fi Fingerprinting and Convolutional Neural Network. In Proceedings of the 2024 Australasian Computer Science Week, Sydney, Australia, 29 January–2 February 2024; pp. 20–25. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Miao, F.; Xia, Y.; Zhu, H. Indoor Localization via Deep Learning with Self-Attention and Stacked Denoising Autoencoders. In Proceedings of the 2024 International Conference on Interactive Intelligent Systems and Techniques, IIST 2024, Bhubaneswar, India, 4–5 March 2024; pp. 242–246. [Google Scholar]
- Li, S.; Kim, K.S.; Tang, Z.; Smith, J.S. Hierarchical Stagewise Training of Linked Deep Neural Networks for Multibuilding and Multifloor Indoor Localization Based on Wi-Fi RSSI Fingerprinting. IEEE Sens. J. 2025, 25, 23341–23351. [Google Scholar] [CrossRef]
- Nguyen, S.M.; Tran, L.D.; Le, D.V.; Havinga, P.J.M. Multi-Surrogate-Teacher Assistance for Representation Alignment in Fingerprint-Based Indoor Localization. In Proceedings of the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Tucson, AZ, USA, 26 February–6 March 2025; pp. 6818–6827. [Google Scholar] [CrossRef]
- Nowicki, M.; Wietrzykowski, J. Low-effort place recognition with WiFi fingerprints using deep learning. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2017; Volume 550, pp. 575–584. [Google Scholar] [CrossRef]
- Cha, J.; Lee, S.; Kim, K.S. Automatic building and floor classification using two consecutive multi-layer perceptron. In Proceedings of the International Conference on Control, Automation and Systems, PyeongChang, Republic of Korea, 17–20 October 2018; pp. 87–91. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060482800&partnerID=40&md5=7bc80f9f4993342769419b041ee59005 (accessed on 15 October 2025).
- Joseph, R.; Sasi, S.B. Indoor Positioning Using WiFi Fingerprint. In Proceedings of the 2018 International Conference on Circuits and Systems in Digital Enterprise Technology, ICCSDET 2018, Kottayam, India, 21–22 December 2018. [Google Scholar] [CrossRef]
- Kim, K.S. Hybrid building/floor classification and location coordinates regression using a single-input and multi-output deep neural network for large-scale indoor localization based on Wi-Fi fingerprinting. In Proceedings of the 2018 6th International Symposium on Computing and Networking Workshops, CANDARW 2018, Takayama, Japan, 27–30 November 2018; pp. 196–201. [Google Scholar] [CrossRef]
- Belmannoubi, S.; Touati, H.; Snoussi, H. Stacked auto-encoder for scalable indoor localization in wireless sensor networks. In Proceedings of the 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019, Tangier, Morocco, 24–28 June 2019; pp. 1245–1250. [Google Scholar] [CrossRef]
- Gan, H.; Khir, M.H.B.M.; Djaswadi, G.W.B.; Ramli, N. A Hybrid Model Based on Constraint OSELM, Adaptive Weighted SRC and KNN for Large-Scale Indoor Localization. IEEE Access 2019, 7, 6971–6989. [Google Scholar] [CrossRef]
- Zhong, Y.; Yuan, Z.; Li, Y.; Yang, B. A wifi positioning algorithm based on deep learning. In Proceedings of the 2019 7th International Conference on Information, Communication and Networks, ICICN 2019, Macao, China, 24–26 April 2019; pp. 99–104. [Google Scholar] [CrossRef]
- Chidlovskii, B.; Antsfeld, L. Semi-supervised Variational Autoencoder for WiFi Indoor Localization. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Ahmed Elesawi, A.E.; Kim, K.S. Hierarchical Multi-Building And Multi-Floor Indoor Localization Based On Recurrent Neural Networks. In Proceedings of the 2021 9th International Symposium on Computing and Networking Workshops, CANDARW 2021, Matsue, Japan, 23–26 November 2021; pp. 193–196. [Google Scholar] [CrossRef]
- Dou, F.; Lu, J.; Xu, T.; Huang, C.H.; Bi, J. A Bisection Reinforcement Learning Approach to 3-D Indoor Localization. IEEE Internet Things J. 2021, 8, 6519–6535. [Google Scholar] [CrossRef]
- Laska, M.; Blankenbach, J. Deeplocbox: Reliable fingerprinting-based indoor area localization. Sensors 2021, 21, 2000. [Google Scholar] [CrossRef]
- Lezama, F.; González, G.G.; Larroca, F.; Capdehourat, G. Indoor Localization using Graph Neural Networks. In Proceedings of the 2021 IEEE URUCON, Montevideo, Uruguay, 24–26 November 2021; pp. 51–54. [Google Scholar] [CrossRef]
- Cha, J.; Lim, E. A hierarchical auxiliary deep neural network architecture for large-scale indoor localization based on Wi-Fi fingerprinting [Formula presented]. Appl. Soft Comput. 2022, 120, 108624. [Google Scholar] [CrossRef]
- Pei, F.; Shi, M.; Kong, X. Multi-Level Feature Extraction and Autoregressive Prediction Based Wi-Fi Indoor Fingerprint Localization. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 1424–1428. [Google Scholar] [CrossRef]
- Ayinla, S.L.; Aziz, A.A.; Drieberg, M. SALLoc: An Accurate Target Localization in WiFi-Enabled Indoor Environments via SAE-ALSTM. IEEE Access 2024, 12, 19694–19710. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, B.; Xiong, K. FGLNoRe: Federated Graph Learning on Non-IID RF Fingerprints for Building-Floor Positioning. In Proceedings of the ICEIEC 2024—Proceedings of 2024 IEEE 14th International Conference on Electronics Information and Emergency Communication, Beijing, China, 24–25 May 2024; pp. 16–20. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, W.; Li, L.; Zhang, B.; Li, C. An Efficient and Robust Fingerprint-Based Localization Method for Multiflloor Indoor Environment. IEEE Internet Things J. 2024, 11, 3927–3941. [Google Scholar] [CrossRef]
- Mahali, M.I.; Leu, J.S.; Putro, N.A.S.; Prakosa, S.W.; Avian, C. DeepFuzzLoc Positioning: A Unified Fusion of Fuzzy Clustering and Deep Learning for Scalable Indoor Localization Using Wi-Fi RSSI. In Proceedings of the 2024 Joint 13th International Conference on Soft Computing and Intelligent Systems and 25th International Symposium on Advanced Intelligent Systems (SCIS&ISIS), Himeji, Japan, 9–12 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Ayinla, S.L.; Aziz, A.A.; Drieberg, M.; Susanto, M.; Tumian, A.; Yahya, M. An Enhanced Deep Neural Network Approach for WiFi Fingerprinting-Based Multi-Floor Indoor Localization. IEEE Open J. Commun. Soc. 2025, 6, 560–575. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.M.; Torres-Sospedra, J.; Potortì, F.; Moreira, A.; Knauth, S.; Berkvens, R.; Huerta, J. Beyond Euclidean Distance for Error Measurement in Pedestrian Indoor Location. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W.; Zheng, J.; Xue, M.; Tang, C.; Zimmermann, R. Towards Floor Identification and Pinpointing Position: A Multistory Localization Model with WiFi Fingerprint. Int. J. Control Autom. Syst. 2022, 20, 1484–1499. [Google Scholar] [CrossRef]
- Sadhukhan, P.; Dahal, K.; Das, P.K. A Novel Weighted Fusion Based Efficient Clustering for Improved Wi-Fi Fingerprint Indoor Positioning. IEEE Trans. Wirel. Commun. 2023, 22, 4461–4474. [Google Scholar] [CrossRef]
- Da Rocha, A.M.; De Oliveira, G.N.; De Souza, L.J.V.; De Lacerda, R. tLoc: A Mathematical Probabilistic Model for Wireless Fingerprinting. In Proceedings of the 2024 32nd European Signal Processing Conference (EUSIPCO), Lyon, France, 26–30 August 2024; pp. 2032–2036. [Google Scholar] [CrossRef]






| Reference | Dataset | Method/Framework | BA | FA | PE |
|---|---|---|---|---|---|
| [20] | Private | Observation and motion models with particle filter | - | - | 1.8 m |
| [21] | Private | Graph and Bayesian | - | 97% | 2.89 m |
| [22] | Private | kNN | - | 100% | 10 m |
| [23] | Private | kNN | - | 100% | 6 m |
| [24] | Private | Database correlation methods | - | 84% | 4.7 m |
| [25] | Private | k Weighted NN | - | 99.60% | 6 m |
| [26] | Private | Weighted centroid, k-means clustering | - | 99.44% | - |
| [27] | Private | kNN | - | 86% | - |
| [29] | Private | Double-weighted similarity-based neighbor | - | - | 2 m |
| [30] | Private | DNN, SAE | - | - | - |
| [31] | Private | different classification algorithms | 100% | 100% | 0.12 m |
| [32] | Private | k-means clustering | - | 97.84% | - |
| [33] | Private | - | 99.90% | 99.40% | 1.8 m |
| [34] | Private | ML algorithms | - | - | 6 m |
| [35] | Private | ML algorithms | - | - | - |
| Reference | Dataset | Method/Framework | BA | FA | PE |
|---|---|---|---|---|---|
| [28] | UJI | kNN | - | 95.20% | 6.19 m |
| [39] | UJI | Extremely Randomized Trees | 100% | 91.44% | 10.12 m |
| [40] | UJI | kNN with confidence measure | 94.40% | 78.20% | - |
| [41] | UJI | Gaussian mixture model-based soft clustering | - | - | 6.29 m |
| [42] | UJI | kNN with similarity measure | 99.92% | 97.47% | 8 m |
| TUT | - | - | 4 m | ||
| [43] | UJI | ML Algorithms | 99.90% | 99.61% | - |
| [44] | UJI | ML Algorithms | - | - | - |
| [45] | UJI | weighted kNN | 99.46% | 91.27% | 8.62 m |
| [47] | UJI | ELM | - | 96.31% | 5.5 m |
| TUT | - | 94.81% | 8.73 m | ||
| UTS | - | 95.63% | 6.43 m | ||
| [48] | UJI | Gradient Boosting | 100% | 99.20% | 4.93 m |
| TUT | - | 97.03% | 7.02 m | ||
| [49] | UJI | kNN | - | 87.70% | 6.84 m |
| [50] | UJI | ML algorithms | - | - | - |
| [51] | UJI | Neural Networks | 100% | 95.52% | 9.68 m |
| [52] | UJI | RF and Gradient Boosting | - | 94.15% | 8.45 m |
| [53] | UJI | kNN | - | 98.52% | 6.93 m |
| TUT | - | - | - | ||
| [54] | UJI | ML Algorithms | 100% | 90.50% | - |
| Reference | Dataset | Method/Framework | BA | FA | PE |
|---|---|---|---|---|---|
| [55] | UJI | CNN | - | 88.90% | - |
| [38] | UJI | CNN, SAE | 100% | 96.03% | 11.78 m |
| TUT | - | 94.22% | 10.88 m | ||
| UTS | - | 94.57% | 7.60 m | ||
| [56] | UJI | CNN, SAE | 100% | 95.92% | - |
| TUT | - | 94% | - | ||
| [57] | UJI | CNN, SAE | - | 94.7% | 7.32 m |
| TUT | - | 94.6% | 7.07 m | ||
| UTS | - | 95.3% | 7.30 m | ||
| [58] | UJI | CNN, ELM | - | - | - |
| TUT | - | - | - | ||
| UTS | - | - | - | ||
| [59] | UJI | CNN | - | 97.69% | - |
| [60] | UJI | CNN, ELM, SAE | - | 96.31% | 8.34 m |
| TUT | - | 95.30% | 7.96 m | ||
| [61] | UJI | CNN | - | - | - |
| [62] | UJI | CNN | - | 93% | 8.19 m |
| [63] | UJI | CNN | 99.91% | 95.96% | - |
| [64] | UJI | CNN | 99.4% | 90.5% | 9.5 m |
| TUT | - | 88.9% | 10.24 m | ||
| UTS | - | 92% | 7.7 m | ||
| [65] | UJI | CNN | - | 95.58% | 4.55 m |
| TUT | - | - | 8.13 m | ||
| [66] | UJI | CNN | - | 94.33% | - |
| TUT | - | 91.32% | - | ||
| UTS | - | 94.85% | - | ||
| [67] | UJI | CNN, SAE | 99.80% | 99.30% | 6.41 m |
| [68] | UJI | CNN | 100% | 94.42% | 8.71 m |
| UTS | - | 95.1% | 7.87 m | ||
| [69] | UJI | Knowledge transfer, CNN, DNN | - | - | 10.79 m |
| TUT | - | - | 7.73 m | ||
| UTS | - | - | 6.30 m |
| Reference | Dataset | Method/Framework | BA | FA | PE |
|---|---|---|---|---|---|
| [70] | UJI | DNN, SAE | - | 98% | - |
| [71] | UJI | MLP | 100% | 94.33% | - |
| [72] | UJI | DNN, SAE | - | 98% | - |
| [73] | TUT | DNN, SAE | - | 94% | - |
| [74] | UJI | SAE | 100% | 99.66% | - |
| [75] | UJI | ELM, kNN | 100% | 95.41% | 6.40 m |
| [76] | UJI | SAE | - | 96% | - |
| [77] | UJI | variational AE | - | - | 4.65 m |
| [46] | UJI | ELM, SAE | - | 98.13% | - |
| [78] | UJI | RNN | 100% | 95.23% | 8.6 2 m |
| [79] | UJI | Deep reinforcement learning | - | - | - |
| UTS | - | - | - | ||
| [80] | UJI | DNN | 99.56% | 92.62% | 9.07 m |
| UTS | - | - | - | ||
| [81] | UJI | Graph neural networks | 99% | 92% | - |
| [82] | UJI | DNN | - | 93.88% | 11.27 m |
| TUT | - | 98.06% | 13.21 m | ||
| [83] | UJI | DNN | - | 95.30% | 7.65 m |
| [84] | UJI | SAE, LSTM | - | - | 8.28 m |
| TUT | - | - | 9.52 m | ||
| UTS | - | - | 6.48 m | ||
| [85] | UJI | Graph Convolutional Network | 99% | 87.80% | - |
| [86] | UJI | LSTM and Gradient Boosting | 100% | 95.23% | 7.82 m |
| TUT | - | 95.34% | 6.89 m | ||
| [87] | UJI | Fuzzy C-Means clustering with deep learning AE | 99.80% | 99.53% | 3.62 m |
| [88] | UJI | DNN | 100% | 94.69% | 5.08 m |
| UTS | - | 96.39% | 4.29 m |
| Reference | Dataset | Method/Framework | BA | FA | PE |
|---|---|---|---|---|---|
| [89] | UJI | Different position error measurement procedures | 100% | 96.25% | 8.34 m |
| [90] | TUT | Graph-based correlation | - | 96.93% | 8.12 m |
| [91] | UJI | weighted fusion-based clustering strategy | - | - | 6.5 m |
| [92] | UJI | Classical likelihood estimation | - | - | 6.94 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Neupane, I.; Shahrestani, S.; Ruan, C. Wi-Fi RSS Fingerprinting-Based Indoor Localization in Large Multi-Floor Buildings. Electronics 2026, 15, 183. https://doi.org/10.3390/electronics15010183
Neupane I, Shahrestani S, Ruan C. Wi-Fi RSS Fingerprinting-Based Indoor Localization in Large Multi-Floor Buildings. Electronics. 2026; 15(1):183. https://doi.org/10.3390/electronics15010183
Chicago/Turabian StyleNeupane, Inoj, Seyed Shahrestani, and Chun Ruan. 2026. "Wi-Fi RSS Fingerprinting-Based Indoor Localization in Large Multi-Floor Buildings" Electronics 15, no. 1: 183. https://doi.org/10.3390/electronics15010183
APA StyleNeupane, I., Shahrestani, S., & Ruan, C. (2026). Wi-Fi RSS Fingerprinting-Based Indoor Localization in Large Multi-Floor Buildings. Electronics, 15(1), 183. https://doi.org/10.3390/electronics15010183

