Junction Temperature and Failure Behavior of High-Power Press Pack vs. Module Diodes Under High Anomalous Surge Currents
Abstract
1. Introduction
- A comparative analysis is conducted between a PCT press-pack diode and a PCT insulated module diode, with both having identical silicon chip dimensions, electrical specifications, and power ratings, under high-surge current conditions.
- A 10 ms high half-sine surge current waveform generator is developed both experimentally and in PSIM to analyze surge events at different power levels for both diode packaging types.
- Simulations were performed to estimate junction temperatures by utilizing measured currents and voltages.
- The estimated junction temperature is evaluated by an electro-thermal model in order to study the behavior of the device during high-stress surge conditions.
- Failure mechanisms and thermal limitations are investigated to assess the robustness and surge current handling capabilities of both diode technologies.
- The findings offer practical guidance on the thermal–electrical trade-offs between press-pack and insulated module diodes for use in high-power applications.
2. Failure Modes
3. PCT Device Structure
4. Experimental Setup and Results
4.1. Experimental Test Setup
4.2. Experimental Results
Numerical Acquisition and Processing
5. Simulation Setup
6. Simulation Results
7. Device Failure Analysis
8. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marchesoni, M.; Passalacqua, M.; Vaccaro, L.; Carpita, M.; Gavin, S.; Kissling, S. Capacitor voltage ripple minimization in voltage source converter for HVDC applications. In Proceedings of the 2019 AEIT HVDC International Conference (AEIT HVDC), Florence, Italy, 9–10 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Araneda, J.; Yuyuniz Gálvez, C.; Morán, L.; Vaccaro, L. Reactive Power Compensation System for the Chilean HVDC Transmission Line. In Proceedings of the 2025 AEIT HVDC International Conference (AEIT HVDC), Genova, Italy, 29–30 May 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar]
- Benevieri, A.; Carbone, L.; Cosso, S.; Kumar, K.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L. Series architecture on hybrid electric vehicles: A review. Energies 2021, 14, 7672. [Google Scholar] [CrossRef]
- Nkembi, A.A.; Santoro, D.; Ahmad, F.; Kortabarria, I.; Cova, P.; Sacchi, E.; Delmonte, N. Novel Droop-Based Techniques for Dynamic Performance Improvement in a Linear Active Disturbance Rejection Controlled-Dual Active Bridge for Fast Battery Charging of Electric Vehicles. Energies 2024, 17, 5171. [Google Scholar] [CrossRef]
- Benevieri, A.; Cosso, S.; Formentini, A.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L. Advances and Perspectives in Multilevel Converters: A Comprehensive Review. Electronics 2024, 13, 4736. [Google Scholar] [CrossRef]
- Choi, U.M.; Blaabjerg, F.; Jørgensen, S. Study on effect of junction temperature swing duration on lifetime of transfer molded power IGBT modules. IEEE Trans. Power Electron. 2017, 32, 6434–6443. [Google Scholar] [CrossRef]
- Wu, X.; Liu, W. An engineering roadmap for the thermoelectric interface materials. J. Mater. 2024, 10, 748–750. [Google Scholar] [CrossRef]
- Oh, H.; Han, B.; McCluskey, P.; Han, C.; Youn, B.D. Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review. IEEE Trans. Power Electron. 2014, 30, 2413–2426. [Google Scholar] [CrossRef]
- Ge, X.; Chen, K.; Wang, H.; Xu, Z.; Fu, Z. Failure Mechanism Investigations of Bond Wires Lifting-Off and Die-Attach Solder Aging Considering the Thermal Coupling Effects. IEEE Trans. Power Electron. 2025, 40, 2042–2056. [Google Scholar] [CrossRef]
- Ahmad, F.; Portesine, F.; Ashero, M.; Marchesoni, M.; Vaccaro, L. Transient Thermal Impedance Characterization of New High Power Press Pack Diodes. In Proceedings of the 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Napoli, Italy, 19–21 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 81–86. [Google Scholar]
- Rodrigues, R.; Zhang, Y.; Jiang, T.; Aeloiza, E.; Cairoli, P. Surge current capability of SiC MOSFETs in AC distribution systems. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018; pp. 331–337. [Google Scholar] [CrossRef]
- Palanisamy, S.; Yoganath, G.V.; Zeng, G.; Lutz, J.; Kowalsky, J.; Basler, T. Temperature determination of SiC MPS diodes during surge current event with measurement and simulation. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Genova, Italy, 2–5 September 2019; IEEE: Piscataway, NJ, USA, 2019; p. P-1. [Google Scholar]
- Nehmer, D.; Ringelmann, T.; Bakran, M.M. Modelling and Evalaution of the Bidirectional Surge Current Robustness of Si(-IGBT and -Diode), SiC(-MOSFETs and -JFET) and GaN(-HEMTs) Devices. Energies 2024, 17, 4362. [Google Scholar] [CrossRef]
- Soeiro, T.B.; Mengotti, E.; Bianda, E.; Ortiz, G. Performance Evaluation of the Body-Diode of SiC Mosfets under Repetitive Surge Current Operation. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 5154–5159. [Google Scholar] [CrossRef]
- Wu, J.; Ren, N.; Sheng, K. Electrothermal Coupling Model With Distributed Heat Sources for Junction Temperature Calculation During Surges. IEEE Trans. Power Electron. 2022, 37, 11887–11895. [Google Scholar] [CrossRef]
- Abuelnaga, A.; Narimani, M.; Bahman, A.S. A review on IGBT module failure modes and lifetime testing. IEEE Access 2021, 9, 9643–9663. [Google Scholar] [CrossRef]
- Wu, R.; Blaabjerg, F.; Wang, H.; Liserre, M. Overview of catastrophic failures of freewheeling diodes in power electronic circuits. Microelectron. Reliab. 2013, 53, 1788–1792. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, E.; Zhao, Z.; Li, J.; Huang, Y. Simulation on fatigue failure of single IGBT chip module of press-pack IGBTs. Trans. China Electrotech. Soc. 2018, 33, 4277–4285. [Google Scholar]
- Poller, T.; Basler, T.; Hernes, M.; D’Arco, S.; Lutz, J. Mechanical analysis of press-pack IGBTs. Microelectron. Reliab. 2012, 52, 2397–2402. [Google Scholar] [CrossRef]
- Loh, W.S.; Corfield, M.; Lu, H.; Hogg, S.; Tilford, T.; Johnson, C.M. Wire bond reliability for power electronic modules-effect of bonding temperature. In Proceedings of the 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime 2007, London, UK, 16–18 April 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–6. [Google Scholar]
- Delepaut, C.; Siconolfi, S.; Mourra, O.; Tonicello, F. MOSFET gate open failure analysis in power electronics. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 189–196. [Google Scholar]
- Li, T.; Wang, Y.; Zhang, Y.; Fan, J.; Li, X.; Qi, L.; Cui, X. Impacts of the pressure distribution on dynamic avalanche in single press-pack IGBT chip. IEEE Trans. Power Electron. 2024, 39, 8187–8201. [Google Scholar] [CrossRef]
- Jian, Y.; Peng, S.; Chen, Z.; He, Z.; He, L.; Lv, X. Influence of different vibration directions on the solder layer fatigue in IGBT modules. Microelectron. Reliab. 2024, 162, 115526. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, Z.; Yan, X.; Li, W.; Liu, Y.; Liu, P. Temperature Distribution and Mechanical Stress Analysis of Press-Pack IGBT Single Chip Under Different Operations. In Proceedings of the Frontier Academic Forum of Electrical Engineering; Springer: Cham, Switzerland, 2025; pp. 789–796. [Google Scholar]
- Li, H.; Yao, R.; Lai, W.; Ren, H.; Li, J. Modeling and analysis on overall fatigue failure evolution of press-pack IGBT device. IEEE Trans. Electron Devices 2019, 66, 1435–1443. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Li, Q.; Tu, C.; Xiao, B.; Xiao, F.; Liu, P.; Gao, B.; Lu, J. Failure mechanism analysis of bond wire of high power IGBT under different load current. In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nanjing, China, 27–29 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 798–803. [Google Scholar]
- Zhang, Y.; Zhan, C.; Zhu, L.; Dou, L.; Wang, W.; Ji, S.; Jin, Y.; Liu, X. Condition deterioration mechanisms of high voltage press-pack IGBT under power cycling test. In Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), Chongqing, China, 25–29 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar]
- Tinschert, L.; Årdal, A.R.; Poller, T.; Bohlländer, M.; Hernes, M.; Lutz, J. Possible failure modes in Press-Pack IGBTs. Microelectron. Reliab. 2015, 55, 903–911. [Google Scholar] [CrossRef]
- Liu, R.; Li, H.; Yao, R.; Wang, X.; Tan, H.; Lai, W.; Yu, Y.; Zhu, Z.; Zhou, B. Research on Long-term Reliability of Silver Sintered Press-Pack IGBT Modules. Power Electron. Devices Components 2022, 3, 100012. [Google Scholar] [CrossRef]
- Peng, Y.; Shen, Y.; Wang, H. A converter-level on-state voltage measurement method for power semiconductor devices. IEEE Trans. Power Electron. 2020, 36, 1220–1224. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Wang, H. A digital twin based estimation method for health indicators of DC–DC converters. IEEE Trans. Power Electron. 2020, 36, 2105–2118. [Google Scholar] [CrossRef]
- Dupont, L.; Avenas, Y.; Jeannin, P.O. Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 2013, 49, 1599–1608. [Google Scholar] [CrossRef]
- Luo, H.; Li, W.; Iannuzzo, F.; He, X.; Blaabjerg, F. Enabling junction temperature estimation via collector-side thermo-sensitive electrical parameters through emitter stray inductance in high-power IGBT modules. IEEE Trans. Ind. Electron. 2017, 65, 4724–4738. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, B.; Qiao, W.; Qu, L. Real-time aging monitoring for IGBT modules using case temperature. IEEE Trans. Ind. Electron. 2015, 63, 1168–1178. [Google Scholar] [CrossRef]
- Scheuermann, U.; Schmidt, R. Impact of solder fatigue on module lifetime in power cycling tests. In Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–10. [Google Scholar]
- Choi, U.M.; Blaabjerg, F.; Jørgensen, S.; Munk-Nielsen, S.; Rannestad, B. Reliability improvement of power converters by means of condition monitoring of IGBT modules. IEEE Trans. Power Electron. 2016, 32, 7990–7997. [Google Scholar] [CrossRef]
- Smet, V.; Forest, F.; Huselstein, J.J.; Rashed, A.; Richardeau, F. Evaluation of V_ce Monitoring as a Real-Time Method to Estimate Aging of Bond Wire-IGBT Modules Stressed by Power Cycling. IEEE Trans. Ind. Electron. 2012, 60, 2760–2770. [Google Scholar] [CrossRef]
- Huang, H.; Mawby, P.A. A lifetime estimation technique for voltage source inverters. IEEE Trans. Power Electron. 2012, 28, 4113–4119. [Google Scholar] [CrossRef]
- Gonzalez-Hernando, F.; San-Sebastian, J.; Garcia-Bediaga, A.; Arias, M.; Iannuzzo, F.; Blaabjerg, F. Wear-out condition monitoring of IGBT and MOSFET power modules in inverter operation. IEEE Trans. Ind. Appl. 2019, 55, 6184–6192. [Google Scholar] [CrossRef]
- Sasaki, K.; Iwasa, N.; Kurosu, T.; Saito, K.; Koike, Y.; Kamita, Y.; Toyoda, Y. Thermal and structural simulation techniques for estimating fatigue life of an IGBT module. In Proceedings of the 2008 20th International Symposium on Power Semiconductor Devices and IC’s, Orlando, FL, USA, 18–22 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 181–184. [Google Scholar]
- Ciappa, M. Selected failure mechanisms of modern power modules. Microelectron. Reliab. 2002, 42, 653–667. [Google Scholar] [CrossRef]
- Yang, L.; Agyakwa, P.A.; Johnson, C.M. Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules. IEEE Trans. Device Mater. Reliab. 2012, 13, 9–17. [Google Scholar] [CrossRef]
- IEC-60747-2; Semiconductor Devices—Part 2: Discrete Devices—Rectifier Diodes. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2016.
- Asadi, F.; Eguchi, K. Power Electronics Circuit Analysis with PSIM®; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021. [Google Scholar]
- Ahmad, F.; Vaccaro, L.; Nkembi, A.A.; Marchesoni, M.; Portesine, F. Surge Current Analysis of High-Power Press Pack Diodes: Junction Temperature and Forward-Voltage Modeling. Electronics 2025, 14, 4899. [Google Scholar] [CrossRef]





















| Technology | Assembly Type | Chip Structure | Devices | Advantages | Disadvantages |
|---|---|---|---|---|---|
| PCT technology | Press-pack ceramic housing | Monolithic, Silicon Round Shape | Diode, Thyristor | Double side cooling. Low junction temperature at the same dissipated power. Very high reliability. Ermetic encapsulation. no degradation | Requires precise clamping force; limited packaging flexibility; larger footprint. |
| PCT technology | PCT-insulated modules | Monolithic, Silicon Round Shape | Diode, Thyristor | High reliability. Electric insulation from the heat sink | Single-sided cooling. High junction temperature at the same dissipated current. Encapsulation with resin, possibility of degradation. |
| Brazing and welding contact | Insulated module | Multi-chip, Square Shape | Diodes, IGBT, MOSFET | High modularity multichip connection in parallel. Lower costs at the same power range. Possibility of using different types of devices, including SiC. | Single-sided cooling. High junction temperature at the same dissipated current. Lower reliability. Encapsulation with resin, possibility of degradation. |
| Failure Mechanism | Blocking Voltage | Over Voltage | High Current (Surge) | Thermal Fatigue | Failure During Commutation |
|---|---|---|---|---|---|
| Origin | Internal to devices (manufacturing origin) | External circuit | External circuit or consequence of internal short circuit | High temperature variation (high thermal cycling) | Peak of voltage or current during commutation |
| Preliminary effects | Increase in and instability of leakage current | - | Increase in VF (forward voltage during conduction) | Increase in VF (forward voltage during conduction) | Peak or voltage and current during commutation detectable by oscilloscope |
| Final effect | Short circuit of devices | Short circuit of devices | Short circuit of devices | Short circuit of devices | Short circuit of devices |
| Chip failure localization | Not easy to detect on the chip | Fusion on the edge of chip | Degradation of aluminium metallization and fusion of large area of silicon | Degradation of surface contact by thermal fatigue | Small fusion at the center of cathode region |
| Role of junction temperature | Medium | No relevant | High | High | High |
| Peak Current (A) | Peak Voltage (V) | Peak Temperature (°C) | ||
|---|---|---|---|---|
| Press Pack | Insulated Module | Press Pack | Insulated Module | |
| 6400 | 3.6 | 3.85 | 42 | 44 |
| 8600 | 4.4 | 4.5 | 55 | 58 |
| 10,800 | 5.4 | 5.7 | 72 | 77 |
| 14,400 | 6.2 | 6.7 | 102 | 112 |
| 18,600 | 7.4 | 8 | 152 | 162 |
| 20,400 | 7.8 | 8.9 | 174 | 197 |
| 26,800 | 13.8 | 15 | 347 | 390 |
| 30,000 | 14.6 | 21 | 427 | 632 |
| 36,600 | 17.7 | 4.8 | 597 | - |
| 36,700 | 4.4 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ahmad, F.; Vaccaro, L.; Nkembi, A.A.; Marchesoni, M.; Portesine, F.; Anyanwu, G. Junction Temperature and Failure Behavior of High-Power Press Pack vs. Module Diodes Under High Anomalous Surge Currents. Electronics 2026, 15, 121. https://doi.org/10.3390/electronics15010121
Ahmad F, Vaccaro L, Nkembi AA, Marchesoni M, Portesine F, Anyanwu G. Junction Temperature and Failure Behavior of High-Power Press Pack vs. Module Diodes Under High Anomalous Surge Currents. Electronics. 2026; 15(1):121. https://doi.org/10.3390/electronics15010121
Chicago/Turabian StyleAhmad, Fawad, Luis Vaccaro, Armel Asongu Nkembi, Mario Marchesoni, Federico Portesine, and Giulio Anyanwu. 2026. "Junction Temperature and Failure Behavior of High-Power Press Pack vs. Module Diodes Under High Anomalous Surge Currents" Electronics 15, no. 1: 121. https://doi.org/10.3390/electronics15010121
APA StyleAhmad, F., Vaccaro, L., Nkembi, A. A., Marchesoni, M., Portesine, F., & Anyanwu, G. (2026). Junction Temperature and Failure Behavior of High-Power Press Pack vs. Module Diodes Under High Anomalous Surge Currents. Electronics, 15(1), 121. https://doi.org/10.3390/electronics15010121

