Interpretable Deep Learning for Pediatric Pneumonia Diagnosis Through Multi-Phase Feature Learning and Activation Patterns
Abstract
:1. Introduction
- It provides a detailed analysis of how CNNs perceive and process images during different training phases, identifying critical learning stages that enhance model performance and interpretability in pediatric pneumonia classification.
- By evaluating three distinct CNN architectures—standard, multi-scale, and strided—this research offers a comprehensive comparison of their strengths and limitations, guiding the selection of optimal models for pediatric pneumonia diagnosis.
- Leveraging the Mish activation function and Grad-CAM visualization, this work enhances model transparency and diagnostic accuracy, enabling clinicians to better understand and trust AI-driven tools for pediatric pneumonia recognition.
2. Related Works
3. Materials and Methods
3.1. Data Preprocessing and Experimental Setup
3.2. Interpretability and Convolutional Methods in Regards to Pneumonia Recognition
3.3. Pediatric Pneumonia Accuracy Assessment
4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudan, I.; O’brien, K.L.; Nair, H.; Liu, L.; Theodoratou, E.; Qazi, S.; Lukšić, I.; Walker, C.L.F.; Black, R.E.; Campbell, H. Epidemiology and Etiology of Childhood Pneumonia in 2010: Estimates of Incidence, Severe Morbidity, Mortality, Underlying Risk Factors and Causative Pathogens for 192 Countries. J. Glob. Health 2013, 3, 010401. [Google Scholar] [PubMed]
- Marangu, D.; Zar, H.J. Childhood Pneumonia in Low-and-Middle-Income Countries: An Update. Paediatr. Respir. Rev. 2019, 32, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Pneumonia in Children. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 22 December 2024).
- Genie, Y.D.; Sayih, A.; Dessalegn, N.; Adugnaw, E.; Hiwot, A.Y.; Tesfa, T.B.; Kindie, K.; Gutema, L.; Ayalew, E.; Kebede, B.F. Time to Recovery from Severe Pneumonia and Its Predictors among Pediatric Patients Admitted in South West Region Governmental Hospitals, South West Ethiopia: Prospective Follow-up Study. Glob. Pediatr. 2024, 9, 100227. [Google Scholar] [CrossRef]
- Scotta, M.C.; Marostica, P.J.C.; Stein, R.T. 25–Pneumonia in Children. In Kendig’s Disorders of the Respiratory Tract in Children, 9th ed.; Wilmott, R.W., Deterding, R., Li, A., Ratjen, F., Sly, P., Zar, H.J., Bush, A., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 427–438.e4. ISBN 978-0-323-44887-1. [Google Scholar]
- Onwuchekwa, C.; Edem, B.; Williams, V.; Oga, E. Estimating the Impact of Pneumococcal Conjugate Vaccines on Childhood Pneumonia in Sub-Saharan Africa: A Systematic Review. F1000Research 2020, 9, 765. [Google Scholar] [CrossRef]
- Pavia, M.; Bianco, A.; Nobile, C.G.A.; Marinelli, P.; Angelillo, I.F. Efficacy of Pneumococcal Vaccination in Children Younger than 24 Months: A Meta-Analysis. Pediatrics 2009, 123, e1103–e1110. [Google Scholar] [CrossRef]
- de Groot, R.C.A.; Estevão, S.C.; Meyer Sauteur, P.M.; Perkasa, A.; Hoogenboezem, T.; Spuesens, E.B.M.; Verhagen, L.M.; van Rossum, A.M.C.; Unger, W.W.J. Mycoplasma Pneumoniae Carriage Evades Induction of Protective Mucosal Antibodies. Eur. Respir. J. 2022, 59, 2100129. [Google Scholar] [CrossRef]
- Berg, A.S.; Inchley, C.S.; Aase, A.; Fjaerli, H.O.; Bull, R.; Aaberge, I.; Leegaard, T.M.; Nakstad, B. Etiology of Pneumonia in a Pediatric Population with High Pneumococcal Vaccine Coverage: A Prospective Study. Pediatr. Infect. Dis. J. 2016, 35, e69–e75. [Google Scholar] [CrossRef]
- Søndergaard, M.J.; Friis, M.B.; Hansen, D.S.; Jørgensen, I.M. Clinical Manifestations in Infants and Children with Mycoplasma Pneumoniae Infection. PLoS ONE 2018, 13, e0195288. [Google Scholar] [CrossRef]
- Biagi, C.; Cavallo, A.; Rocca, A.; Pierantoni, L.; Antonazzo, D.; Dondi, A.; Gabrielli, L.; Lazzarotto, T.; Lanari, M. Pulmonary and Extrapulmonary Manifestations in Hospitalized Children with Mycoplasma Pneumoniae Infection. Microorganisms 2021, 9, 2553. [Google Scholar] [CrossRef]
- de Benedictis, F.M.; Kerem, E.; Chang, A.B.; Colin, A.A.; Zar, H.J.; Bush, A. Complicated Pneumonia in Children. Lancet 2020, 396, 786–798. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhou, Y.; Gao, F.; Qiu, X.; Li, J.; Yuan, H.; Jin, W.; Lin, W. Pediatric Adenovirus Pneumonia: Clinical Practice and Current Treatment. Front. Med. 2023, 10, 1207568. [Google Scholar] [CrossRef] [PubMed]
- Fancourt, N.; Deloria Knoll, M.; Barger-Kamate, B.; de Campo, J.; de Campo, M.; Diallo, M.; Ebruke, B.E.; Feikin, D.R.; Gleeson, F.; Gong, W.; et al. Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clin. Infect. Dis. 2017, 64, S253–S261. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Mohammadi, R.; Ghaffari, H.; Sadighi, N.; Reiazi, R. Automated Detection of Pneumonia Cases Using Deep Transfer Learning with Paediatric Chest X-Ray Images. Br. J. Radiol. 2021, 94, 20201263. [Google Scholar] [CrossRef]
- Chan, H.-P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep Learning in Medical Image Analysis. Adv. Exp. Med. Biol. 2020, 1213, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Hakkoum, H.; Abnane, I.; Idri, A. Interpretability in the Medical Field: A Systematic Mapping and Review Study. Appl. Soft Comput. 2022, 117, 108391. [Google Scholar] [CrossRef]
- Nguyen, H.; Huynh, H.; Tran, T.; Huynh, H. Explanation of the Convolutional Neural Network Classifying Chest X-Ray Images Supporting Pneumonia Diagnosis. EAI Endorsed Trans. Context-Aware Syst. Appl. 2020, 7, e3. [Google Scholar] [CrossRef]
- Lo, S.-H.; Yin, Y. A Novel Interaction-Based Methodology towards Explainable AI with Better Understanding of Pneumonia Chest X-Ray Images. Discov. Artif. Intell. 2021, 1, 16. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Philbrick, K.A.; Yoshida, K.; Inoue, D.; Akkus, Z.; Kline, T.L.; Weston, A.D.; Korfiatis, P.; Takahashi, N.; Erickson, B.J. What Does Deep Learning See? Insights From a Classifier Trained to Predict Contrast Enhancement Phase From CT Images. AJR Am. J. Roentgenol. 2018, 211, 1184–1193. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, X. A Comparative Visualization Analysis of Neural Network Models Using Grad-CAM. Sci. Technol. Eng. Chem. Environ. Prot. 2024, 1, 10. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, L.; Shi, W.; Liu, J.; He, W.; Jiang, Z. A Visualization Method Based on the Grad-CAM for Medical Image Segmentation Model. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; pp. 242–247. [Google Scholar]
- Ali, A.A. Interpretable Deep Learning Framework for COVID-19 Detection: Grad-CAM Integration with Pre-Trained CNN Models on Chest X-Ray Images. Int. J. Sci. Res. Sci. Eng. Technol. 2025, 12, 153–163. [Google Scholar] [CrossRef]
- Saporta, A.; Gui, X.; Agrawal, A.; Pareek, A.; Truong, S.Q.H.; Nguyen, C.D.T.; Ngo, V.-D.; Seekins, J.; Blankenberg, F.G.; Ng, A.Y.; et al. Benchmarking Saliency Methods for Chest X-Ray Interpretation. Nat. Mach. Intell. 2022, 4, 867–878. [Google Scholar] [CrossRef]
- Suara, S.; Jha, A.; Sinha, P.; Sekh, A.A. Is Grad-CAM Explainable in Medical Images? In Proceedings of the Computer Vision and Image Processing; Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 124–135. [Google Scholar]
- Web of Science. Available online: https://www.webofscience.com (accessed on 18 April 2025).
- Radočaj, P.; Radočaj, D.; Martinović, G. Optimizing Convolutional Neural Network Architectures with Optimal Activation Functions for Pediatric Pneumonia Diagnosis Using Chest X-Rays. Big Data Cogn. Comput. 2025, 9, 25. [Google Scholar] [CrossRef]
- Naydenova, E.; Tsanas, A.; Casals-Pascual, C.; De Vos, M. Smart Diagnostic Algorithms for Automated Detection of Childhood Pneumonia in Resource-Constrained Settings. In Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 8–11 October 2015; pp. 377–384. [Google Scholar]
- Luján-García, J.E.; Yáñez-Márquez, C.; Villuendas-Rey, Y.; Camacho-Nieto, O. A Transfer Learning Method for Pneumonia Classification and Visualization. Appl. Sci. 2020, 10, 2908. [Google Scholar] [CrossRef]
- Panwar, H.; Gupta, P.K.; Siddiqui, M.K.; Morales-Menendez, R.; Bhardwaj, P.; Singh, V. A Deep Learning and Grad-CAM Based Color Visualization Approach for Fast Detection of COVID-19 Cases Using Chest X-Ray and CT-Scan Images. Chaos Solitons Fractals 2020, 140, 110190. [Google Scholar] [CrossRef] [PubMed]
- Zebin, T.; Rezvy, S. COVID-19 Detection and Disease Progression Visualization: Deep Learning on Chest X-Rays for Classification and Coarse Localization. Appl. Intell. Dordr. Neth. 2021, 51, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.F.; Tseng, T.-L.; Pokojovy, M.; McCaffrey, P.; Walser, E.; Moen, S.; Vo, A.; Ho, J.C. Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-Ray Images. Diagnostics 2024, 14, 1699. [Google Scholar] [CrossRef]
- Mohagheghi, S.; Alizadeh, M.; Safavi, S.M.; Foruzan, A.H.; Chen, Y.-W. Integration of CNN, CBMIR, and Visualization Techniques for Diagnosis and Quantification of Covid-19 Disease. IEEE J. Biomed. Health Inform. 2021, 25, 1873–1880. [Google Scholar] [CrossRef]
- Owais, M.; Yoon, H.S.; Mahmood, T.; Haider, A.; Sultan, H.; Park, K.R. Light-Weighted Ensemble Network with Multilevel Activation Visualization for Robust Diagnosis of COVID19 Pneumonia from Large-Scale Chest Radiographic Database. Appl. Soft Comput. 2021, 108, 107490. [Google Scholar] [CrossRef]
- Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Radočaj, P.; Radočaj, D.; Martinović, G. Pediatric Pneumonia Recognition Using an Improved DenseNet201 Model with Multi-Scale Convolutions and Mish Activation Function. Algorithms 2025, 18, 98. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef] [PubMed]
- Keras 3 API Documentation. Available online: https://keras.io/api/ (accessed on 24 September 2024).
- Module: Tf|TensorFlow v2.16.1. Available online: https://www.tensorflow.org/api_docs/python/tf (accessed on 4 May 2024).
- Liu, J.; Zhang, L.; Guo, A.; Gao, Y.; Zheng, Y. Multi-Scale Feature Fusion Convolutional Neural Network for Multi-Modal Medical Image Fusion. In Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things, Xiamen, China, 26–28 May 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 913–917. [Google Scholar]
- Yi, R.; Tang, L.; Tian, Y.; Liu, J.; Wu, Z. Identification and Classification of Pneumonia Disease Using a Deep Learning-Based Intelligent Computational Framework. Neural Comput. Appl. 2023, 35, 14473–14486. [Google Scholar] [CrossRef] [PubMed]
- Charan, K.S.; Krishna, O.V.; Sai, P.V.; Ilavarasi, A.K. Transfer Learning Based Multi-Class Lung Disease Prediction Using Textural Features Derived From Fusion Data. IEEE Access 2024, 12, 108248–108262. [Google Scholar] [CrossRef]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Sanghvi, H.A.; Patel, R.H.; Agarwal, A.; Gupta, S.; Sawhney, V.; Pandya, A.S. A Deep Learning Approach for Classification of COVID and Pneumonia Using DenseNet-201. Int. J. Imaging Syst. Technol. 2023, 33, 18–38. [Google Scholar] [CrossRef]
- Roy, P.; Efat, A.H.; Hasan, S.M.; Srizon, A.Y.; Hossain, M.R.; Faruk, M.F.; Al Mamun, M. Multi-Scale Feature Fusion Framework Based on Attention Integrated Customized DenseNet201 Architecture for Multi-Class Skin Lesion Detection. In Proceedings of the 2024 IEEE International Conference on Power, Electrical, Electronics and Industrial Applications (PEEIACON), Rajshahi, Bangladesh, 12–13 September 2024; pp. 496–501. [Google Scholar]
- Yuan, H.; Cheng, J.; Wu, Y.; Zeng, Z. Low-Res MobileNet: An Efficient Lightweight Network for Low-Resolution Image Classification in Resource-Constrained Scenarios. Multimed. Tools Appl. 2022, 81, 38513–38530. [Google Scholar] [CrossRef]
- Yang, Y.; Mei, G.; Piccialli, F. A Deep Learning Approach Considering Image Background for Pneumonia Identification Using Explainable AI (XAI). IEEE/ACM Trans. Comput. Biol. Bioinform. 2024, 21, 857–868. [Google Scholar] [CrossRef]
- Desai, S.; Ramaswamy, H.G. Ablation-CAM: Visual Explanations for Deep Convolutional Network via Gradient-Free Localization. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020; pp. 983–991. [Google Scholar]
- Namatēvs, I. Deep Convolutional Neural Networks: Structure, Feature Extraction and Training. Inf. Technol. Manag. Sci. 2017, 20, 40–47. [Google Scholar] [CrossRef]
- Yan, T.; Wong, P.K.; Ren, H.; Wang, H.; Wang, J.; Li, Y. Automatic Distinction between COVID-19 and Common Pneumonia Using Multi-Scale Convolutional Neural Network on Chest CT Scans. Chaos Solitons Fractals 2020, 140, 110153. [Google Scholar] [CrossRef]
- Sarkar, O.; Islam, M.R.; Syfullah, M.K.; Islam, M.T.; Ahamed, M.F.; Ahsan, M.; Haider, J. Multi-Scale CNN: An Explainable AI-Integrated Unique Deep Learning Framework for Lung-Affected Disease Classification. Technologies 2023, 11, 134. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Wang, X.; Geng, L. A Stride-Based Convolution Decomposition Method to Stretch CNN Acceleration Algorithms for Efficient and Flexible Hardware Implementation. IEEE Trans. Circuits Syst. Regul. Pap. 2020, 67, 3007–3020. [Google Scholar] [CrossRef]
- Younesi, A.; Ansari, M.; Fazli, M.; Ejlali, A.; Shafique, M.; Henkel, J. A Comprehensive Survey of Convolutions in Deep Learning: Applications, Challenges, and Future Trends. IEEE Access 2024, 12, 41180–41218. [Google Scholar] [CrossRef]
- Ayachi, R.; Afif, M.; Said, Y.; Atri, M. Strided Convolution Instead of Max Pooling for Memory Efficiency of Convolutional Neural Networks. In Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18); Bouhlel, M.S., Rovetta, S., Eds.; Springer International Publishing: Cham, Swizerland, 2020; Volume 1, pp. 234–243. [Google Scholar]
- Zaniolo, L.; Marques, O. On the Use of Variable Stride in Convolutional Neural Networks. Multimed. Tools Appl. 2020, 79, 13581–13598. [Google Scholar] [CrossRef]
- Fränti, P.; Mariescu-Istodor, R. Soft Precision and Recall. Pattern Recognit. Lett. 2023, 167, 115–121. [Google Scholar] [CrossRef]
- Khan, S.I.; Shahrior, A.; Karim, R.; Hasan, M.; Rahman, A. MultiNet: A Deep Neural Network Approach for Detecting Breast Cancer through Multi-Scale Feature Fusion. J. King Saud Univ.–Comput. Inf. Sci. 2022, 34, 6217–6228. [Google Scholar] [CrossRef]
- Franquet, T. Imaging of Pulmonary Viral Pneumonia. Radiology 2011, 260, 18–39. [Google Scholar] [CrossRef]
- Garg, M.; Prabhakar, N.; Kiruthika, P.; Agarwal, R.; Aggarwal, A.; Gulati, A.; Khandelwal, N. Imaging of Pneumonia: An Overview. Curr. Radiol. Rep. 2017, 5, 16. [Google Scholar] [CrossRef]
- Franquet, T. Imaging of Community-Acquired Pneumonia. J. Thorac. Imaging 2018, 33, 282. [Google Scholar] [CrossRef]
- Nillmani; Jain, P.K.; Sharma, N.; Kalra, M.K.; Viskovic, K.; Saba, L.; Suri, J.S. Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-Ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models. Diagnostics 2022, 12, 652. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Dai, C.; Dong, Q.; Badrigilan, S. Accuracy of Deep Learning for Automated Detection of Pneumonia Using Chest X-Ray Images: A Systematic Review and Meta-Analysis. Diagnostics 2020, 123, 103898. [Google Scholar] [CrossRef]
- Chapman, W.W.; Fizman, M.; Chapman, B.E.; Haug, P.J. A Comparison of Classification Algorithms to Automatically Identify Chest X-Ray Reports That Support Pneumonia. J. Biomed. Inform. 2001, 34, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Rocha, B.M.; Kaimakamis, E.; Cheimariotis, G.-A.; Petmezas, G.; Chatzis, E.; Kilintzis, V.; Stefanopoulos, L.; Pessoa, D.; Marques, A.; et al. A Deep Learning Method for Predicting the COVID-19 ICU Patient Outcome Fusing X-Rays, Respiratory Sounds, and ICU Parameters. Expert Syst. Appl. 2024, 235, 121089. [Google Scholar] [CrossRef]
- Wehbe, R.M.; Sheng, J.; Dutta, S.; Chai, S.; Dravid, A.; Barutcu, S.; Wu, Y.; Cantrell, D.R.; Xiao, N.; Allen, B.D.; et al. DeepCOVID-XR: An Artificial Intelligence Algorithm to Detect COVID-19 on Chest Radiographs Trained and Tested on a Large U.S. Clinical Data Set. Radiology 2021, 299, E167–E176. [Google Scholar] [CrossRef] [PubMed]
Architecture | Strengths | Limitations |
---|---|---|
InceptionV3 | Efficient multi-scale feature extraction through Inception modules [41]; effective at capturing fine-grained patterns, with moderate computational cost [42]. | May struggle with very subtle features in pediatric lungs; not as lightweight as MobileNetV2 [43]. |
InceptionResNetV2 | Combines Inception modules with residual connections; deeper and more accurate; improved gradient flow [44]. | Higher computational requirements; risk of overfitting, if not carefully regularized [44]. |
DenseNet201 | Dense connectivity promotes feature reuse and mitigates vanishing gradients [45]; strong performance on small datasets. | Higher memory usage; feature maps can become redundant, slightly increasing inference time [37,46]. |
MobileNetV2 | Lightweight with depth-wise separable convolutions; ideal for real-time applications and devices with limited resources [43]. | May underperform on very complex patterns when compared to the results for heavier models; limited representational capacity [47]. |
Transfer Deep Learning Model | Classification Approach | Accuracy | F1-Score | Precision | Recall | Specificity |
---|---|---|---|---|---|---|
InceptionV3 | Approach 1 | 0.9573 | 0.9462 | 0.9444 | 0.9479 | 0.9274 |
Approach 2 | 0.9394 | 0.9202 | 0.9394 | 0.9049 | 0.8297 | |
Approach 3 | 0.9684 | 0.9595 | 0.9659 | 0.9536 | 0.9211 | |
InceptionResNetV2 | Approach 1 | 0.9684 | 0.9604 | 0.9564 | 0.9645 | 0.9558 |
Approach 2 | 0.9539 | 0.9407 | 0.9483 | 0.9337 | 0.8896 | |
Approach 3 | 0.9718 | 0.9634 | 0.9767 | 0.9519 | 0.9085 | |
MobileNetV2 | Approach 1 | 0.9206 | 0.9060 | 0.8871 | 0.9367 | 0.9716 |
Approach 2 | 0.9437 | 0.9254 | 0.9481 | 0.9078 | 0.8297 | |
Approach 3 | 0.9104 | 0.8945 | 0.8754 | 0.9277 | 0.9653 | |
DenseNet201 | Approach 1 | 0.9650 | 0.9542 | 0.9709 | 0.9403 | 0.8864 |
Approach 2 | 0.9676 | 0.9582 | 0.9662 | 0.9510 | 0.9148 | |
Approach 3 | 0.9573 | 0.9440 | 0.9622 | 0.9291 | 0.8675 |
Transfer Deep Learning Model | Classification Approach | 10 Epochs | 20 Epochs | ||||
---|---|---|---|---|---|---|---|
TA | VA | VL | TA | VA | VL | ||
InceptionV3 | Approach 1 | 0.9379 | 0.9149 | 0.2379 | 0.9662 | 0.9714 | 0.1034 |
Approach 2 | 0.9364 | 0.9253 | 0.1844 | 0.9688 | 0.9384 | 0.1645 | |
Approach 3 | 0.9638 | 0.9583 | 0.1155 | 0.9658 | 0.9705 | 0.0744 | |
InceptionResNetV2 | Approach 1 | 0.9688 | 0.9453 | 0.7087 | 0.9375 | 0.9714 | 0.0723 |
Approach 2 | 0.9302 | 0.9392 | 0.1664 | 0.9688 | 0.9497 | 0.1476 | |
Approach 3 | 0.9512 | 0.9392 | 0.4888 | 0.9769 | 0.9670 | 0.0912 | |
MobileNetV2 | Approach 1 | 0.9375 | 0.9201 | 0.2278 | 0.9705 | 0.9193 | 0.2688 |
Approach 2 | 0.9688 | 0.9549 | 0.1289 | 0.9520 | 0.9523 | 0.1383 | |
Approach 3 | 0.9664 | 0.8811 | 0.5385 | 0.9681 | 0.9314 | 0.2727 | |
DenseNet201 | Approach 1 | 0.9062 | 0.9314 | 0.2257 | 0.9688 | 0.9635 | 0.1372 |
Approach 2 | 0.9688 | 0.9592 | 0.1171 | 0.9375 | 0.9566 | 0.1058 | |
Approach 3 | 0.9523 | 0.9583 | 0.1191 | 0.9062 | 0.9566 | 0.1254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radočaj, P.; Martinović, G. Interpretable Deep Learning for Pediatric Pneumonia Diagnosis Through Multi-Phase Feature Learning and Activation Patterns. Electronics 2025, 14, 1899. https://doi.org/10.3390/electronics14091899
Radočaj P, Martinović G. Interpretable Deep Learning for Pediatric Pneumonia Diagnosis Through Multi-Phase Feature Learning and Activation Patterns. Electronics. 2025; 14(9):1899. https://doi.org/10.3390/electronics14091899
Chicago/Turabian StyleRadočaj, Petra, and Goran Martinović. 2025. "Interpretable Deep Learning for Pediatric Pneumonia Diagnosis Through Multi-Phase Feature Learning and Activation Patterns" Electronics 14, no. 9: 1899. https://doi.org/10.3390/electronics14091899
APA StyleRadočaj, P., & Martinović, G. (2025). Interpretable Deep Learning for Pediatric Pneumonia Diagnosis Through Multi-Phase Feature Learning and Activation Patterns. Electronics, 14(9), 1899. https://doi.org/10.3390/electronics14091899