Learning-Enabled Robust Control of Thermoacoustic Oscillations
Abstract
1. Introduction
2. Materials and Methods
2.1. Thermoacoustic System Model
2.2. Mathematical Model
2.3. Control Design
2.3.1. Update Rules
2.3.2. Stability Analysis
3. Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, K.T.; Hochgreb, S. Measurements of triggering and transient growth in a model lean-premixed gas turbine combustor. Combust. Flame 2012, 159, 1215–1227. [Google Scholar] [CrossRef]
- Lazik, W.; Doerr, T.; Bake, S.; vd Bank, R.; Rackwitz, L. Development of lean-burn low-NOx combustion technology at Rolls-Royce Deutschland. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008; Volume 43130, pp. 797–807. [Google Scholar]
- Semlitsch, B.; Hynes, T.; Langella, I.; Swaminathan, N.; Dowling, A.P. Entropy and vorticity wave generation in realistic gas turbine combustors. J. Propuls. Power 2019, 35, 839–849. [Google Scholar] [CrossRef]
- Richards, G.A.; Straub, D.L.; Robey, E.H. Passive control of combustion dynamics in stationary gas turbines. J. Propuls. Power 2003, 19, 795–810. [Google Scholar] [CrossRef]
- Gysling, D.L.; Copeland, G.S.; McCormick, D.C.; Proscia, W.M. Combustion system damping augmentation with Helmholtz resonator. J. Eng. Gas Turbines Power 2000, 122, 269–274. [Google Scholar] [CrossRef]
- Zhao, D.; Morgans, A.S. Tuned passive control of combustion instabilities using multiple Helmholtz resonators. J. Sound Vib. 2009, 320, 744–757. [Google Scholar] [CrossRef]
- Eldredge, J.D.; Dowling, A.P. The absorption of axial acoustic wave by a perforated liner with bias flow. J. Fluid Mech. 2003, 485, 307–335. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, D. Time-domain characterizaton of the acoustic damping of a perforated liner with bias flow. J. Acoust. Soc. Am. 2012, 132, 271–281. [Google Scholar] [CrossRef]
- McManus, K.; Poinsot, T.; Candel, S.M. A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 1993, 19, 1–29. [Google Scholar] [CrossRef]
- Dowling, A.P.; Morgans, A.S. Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 2005, 37, 151–182. [Google Scholar] [CrossRef]
- Olgac, N.; Zalluhoglu, U.; Kammer, A.S. A new perspective in designing delayed feedback control for thermoacoustic instabilities (TAI). Combust. Sci. Technol. 2015, 187, 697–720. [Google Scholar] [CrossRef]
- Heckl, M.A. Active control of the noise from a Rijke tube. J. Sound Vib. 1988, 124, 117–133. [Google Scholar] [CrossRef]
- Zhao, D.; Chow, Z. Thermoacoustic instability of a laminar premixed flame in Rijke tube with a hydrodynamic region. J. Sound Vib. 2013, 332, 3419–3437. [Google Scholar] [CrossRef]
- Seume, J.; Vortmeyer, N.; Krause, W.; Hermann, J.; Hantschk, C.C.; Zangl, P.; Gleis, S.; Vortmeyer, D.; Orthmann, A. Application of active combustion instability control to a heavy duty gas turbine. J. Eng. Gas Turbines Power 1998, 120, 721–726. [Google Scholar] [CrossRef]
- Sattinger, S.S.; Neumeier, Y.; Nabi, A.; Zinn, B.T.; Amos, D.J.; Darling, D.D. Sub-scale demonstration of the active feedback control of gas turbine combustion instability. Trans. ASME 2000, 262, 262–268. [Google Scholar] [CrossRef]
- Mondal, S.; Chattopadhyay, A.; Mukhopadhyay, A.; Ray, A. Transfer learning of deep neural networks for predicting thermoacoustic instabilities in combustion systems. Energy AI 2021, 5, 10085. [Google Scholar] [CrossRef]
- Xie, M.; Zhao, X.; Zhao, D.; Fu, J.; Shelton, C.; Semlitsch, B. Predicting bifurcation and amplitude death characteristics of thermoacoustic instabilities from PINNs-derived van der Pol oscillators. J. Fluid Mech. 2024, 998, A46. [Google Scholar] [CrossRef]
- Zhao, D.; Lu, Z.; Ahao, H.; Li, X.Y.; Wang, B.; Liu, P. A review of active control approaches in stabilizing combustion systems in aerospace industry. Prog. Aerosp. Sci. 2018, 97, 35–60. [Google Scholar] [CrossRef]
- Campos-Delgado, D.U.; Zhou, K.; Allgood, D.; Acharya, S. Active control of combustion instabilities using model-based controllers. Combust. Sci. Technol. 2003, 175, 27–53. [Google Scholar] [CrossRef]
- Annaswamy, A.M.; Fleifil, M.; Hathout, J.P.; Ghoniem, A.F. Impact of linear coupling on the design of active controllers for thermoacoustic instability. Combust. Sci. Technol. 1997, 128, 131–180. [Google Scholar] [CrossRef]
- Hervas, J.R.; Zhao, D.; Reyhanoglu, M. Nonlinear feedback control of self-sustained thermoacoustic oscillations. Aerosp. Sci. Technol. 2015, 41, 209–215. [Google Scholar] [CrossRef]
- Hervas, J.R.; Reyhanoglu, M.; MacKunis, W. Sliding mode control of Rijke-type thermoacoustic systems. In Proceedings of the IEEE Workshop on Recent Advances in Sliding Modes (RASM), Istanbul, Turkey, 9–11 April 2015; pp. 1–6. [Google Scholar]
- Edwards, C.; Spurgeon, S.K. Sliding Mode Control. Theory and Applications; Taylor and Francis: Abingdon, Thames, UK, 1998. [Google Scholar]
- Kayacan, E. Sliding mode learning control of uncertain nonlinear systems with Lyapunov stability analysis. Trans. Inst. Meas. Control 2019, 41, 1750–1760. [Google Scholar] [CrossRef]
- Topalov, A.V.; Kaynak, O. Online learning in adaptive neurocontrol schemes with a sliding mode algorithm. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2001, 31, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Kayacan, E.; Kayacan, E.; Ramon, H.; Saeys, W. Learning in centralized nonlinear model predictive control: Application to an autonomous tractor-trailer system. IEEE Trans. Control Syst. Technol. 2014, 23, 197–205. [Google Scholar] [CrossRef]
- Kocer, B.B.; Tjahjowidodo, T.; Seet, G.G.L. Centralized predictive ceiling interaction control of quadrotor VTOL UAV. Aerosp. Sci. Technol. 2018, 76, 455–465. [Google Scholar] [CrossRef]
- Fu, C.; Hong, W.; Lu, H.; Zhang, L.; Guo, X.; Tian, Y. Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints. Aerosp. Sci. Technol. 2018, 78, 593–603. [Google Scholar] [CrossRef]
- Wu, B.; Wu, J.; He, W.; Tang, G.; Zhao, Z. Adaptive neural control for an uncertain 2-DOF helicopter system with unknown control direction and actuator faults. Mathematics 2022, 10, 4342. [Google Scholar] [CrossRef]
- Xu, Z.; Li, W.; Wang, Y. Robust learning control for shipborne manipulator with fuzzy neural network. Front. Neurorobotics 2019, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Kayacan, E.; Fossen, T.I. Feedback linearization control for systems with mismatched uncertainties via disturbance observers. Asian J. Control 2019, 21, 1064–1076. [Google Scholar] [CrossRef]
- Şahin, S. Learning feedback linearization using artificial neural networks. Neural Process. Lett. 2016, 44, 625–637. [Google Scholar] [CrossRef]
- Chi, R.; Hou, Z.; Huang, B.; Jin, S. A unified data-driven design framework of optimality-based generalized iterative learning control. Comput. Chem. Eng. 2015, 77, 10–23. [Google Scholar] [CrossRef]
- You, S.; Son, Y.S.; Gui, Y.; Kim, W. Gradient-descent-based learning gain for backstepping controller and disturbance observer of nonlinear systems. IEEE Access 2023, 11, 2743–2753. [Google Scholar] [CrossRef]
- Reyhanoglu, M.; Jafari, M. A simple learning approach for robust tracking control of a class of dynamical systems. Electronics 2023, 12, 2026. [Google Scholar] [CrossRef]
- Jafari, M.; Reyhanoglu, M.; Kozhabek, Z. Simple learning-based robust nonlinear control of an electric pump for liquid-propellant rocket engines. Electronics 2023, 12, 3527. [Google Scholar] [CrossRef]
- Reyhanoglu, M.; Jafari, M.; Rehan, M. Simple learning-based robust trajectory tracking control of a 2-DOF helicopter system. Electronics 2022, 11, 2075. [Google Scholar] [CrossRef]
- Hajiahmadi, F.; Jafari, M.; Reyhanoglu, M. Machine learning-based control of autonomous vehicles for solar panel cleaning systems in agricultural solar farms. AgriEngineering 2024, 6, 1417–1435. [Google Scholar] [CrossRef]
- Epperlein, J.P.; Bamieh, B.; Astrom, K.J. Thermoacoustics and the Rijke tube: Experiments, identification, and modeling. IEEE Control Syst. Mag. 2015, 35, 57–77. [Google Scholar]
- Fleifil, M.; Hathout, J.P.; Annaswamy, A.M.; Ghoniem, A.F. The origin of secondary peaks with active control of thermoacoustic instability. Combust. Sci. Technol. 1998, 133, 227–265. [Google Scholar] [CrossRef]
- Juniper, M.P. Triggering in the horizontal rijke tube: Non-normality, transient growth and bypass transition. J. Fluid Mech. 2011, 667, 272–308. [Google Scholar] [CrossRef]
- Matveev, K.I.; Culick, F.C. A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 2003, 185, 1059–1083. [Google Scholar] [CrossRef]
Variable | Symbol |
---|---|
Duct length | |
Hot wire location | |
Hot wire length | w |
Hot wire width | |
Hot wire temperature | |
Actuator location | |
Mean flow speed | |
Mean flow density | |
Mean flow temperature | |
Mean flow pressure | |
Mean flow sound speed | |
Mean flow Mach number | |
Specific heat capacity | |
Adiabatic index | |
Gas constant | R |
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
kg/m3 | W/m · K | ||||
719 | J/kg · K | - | |||
1 | m | m | |||
c | 344 | m/s | m/s | ||
295 | K | 1680 | K | ||
m | S | m | |||
Pa | - | ||||
- | - | ||||
- | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyhanoglu, M.; Jafari, M. Learning-Enabled Robust Control of Thermoacoustic Oscillations. Electronics 2025, 14, 1771. https://doi.org/10.3390/electronics14091771
Reyhanoglu M, Jafari M. Learning-Enabled Robust Control of Thermoacoustic Oscillations. Electronics. 2025; 14(9):1771. https://doi.org/10.3390/electronics14091771
Chicago/Turabian StyleReyhanoglu, Mahmut, and Mohammad Jafari. 2025. "Learning-Enabled Robust Control of Thermoacoustic Oscillations" Electronics 14, no. 9: 1771. https://doi.org/10.3390/electronics14091771
APA StyleReyhanoglu, M., & Jafari, M. (2025). Learning-Enabled Robust Control of Thermoacoustic Oscillations. Electronics, 14(9), 1771. https://doi.org/10.3390/electronics14091771