Learning-Enabled Robust Control of Thermoacoustic Oscillations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermoacoustic System Model
2.2. Mathematical Model
2.3. Control Design
2.3.1. Update Rules
2.3.2. Stability Analysis
3. Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, K.T.; Hochgreb, S. Measurements of triggering and transient growth in a model lean-premixed gas turbine combustor. Combust. Flame 2012, 159, 1215–1227. [Google Scholar] [CrossRef]
- Lazik, W.; Doerr, T.; Bake, S.; vd Bank, R.; Rackwitz, L. Development of lean-burn low-NOx combustion technology at Rolls-Royce Deutschland. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008; Volume 43130, pp. 797–807. [Google Scholar]
- Semlitsch, B.; Hynes, T.; Langella, I.; Swaminathan, N.; Dowling, A.P. Entropy and vorticity wave generation in realistic gas turbine combustors. J. Propuls. Power 2019, 35, 839–849. [Google Scholar] [CrossRef]
- Richards, G.A.; Straub, D.L.; Robey, E.H. Passive control of combustion dynamics in stationary gas turbines. J. Propuls. Power 2003, 19, 795–810. [Google Scholar] [CrossRef]
- Gysling, D.L.; Copeland, G.S.; McCormick, D.C.; Proscia, W.M. Combustion system damping augmentation with Helmholtz resonator. J. Eng. Gas Turbines Power 2000, 122, 269–274. [Google Scholar] [CrossRef]
- Zhao, D.; Morgans, A.S. Tuned passive control of combustion instabilities using multiple Helmholtz resonators. J. Sound Vib. 2009, 320, 744–757. [Google Scholar] [CrossRef]
- Eldredge, J.D.; Dowling, A.P. The absorption of axial acoustic wave by a perforated liner with bias flow. J. Fluid Mech. 2003, 485, 307–335. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, D. Time-domain characterizaton of the acoustic damping of a perforated liner with bias flow. J. Acoust. Soc. Am. 2012, 132, 271–281. [Google Scholar] [CrossRef]
- McManus, K.; Poinsot, T.; Candel, S.M. A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 1993, 19, 1–29. [Google Scholar] [CrossRef]
- Dowling, A.P.; Morgans, A.S. Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 2005, 37, 151–182. [Google Scholar] [CrossRef]
- Olgac, N.; Zalluhoglu, U.; Kammer, A.S. A new perspective in designing delayed feedback control for thermoacoustic instabilities (TAI). Combust. Sci. Technol. 2015, 187, 697–720. [Google Scholar] [CrossRef]
- Heckl, M.A. Active control of the noise from a Rijke tube. J. Sound Vib. 1988, 124, 117–133. [Google Scholar] [CrossRef]
- Zhao, D.; Chow, Z. Thermoacoustic instability of a laminar premixed flame in Rijke tube with a hydrodynamic region. J. Sound Vib. 2013, 332, 3419–3437. [Google Scholar] [CrossRef]
- Seume, J.; Vortmeyer, N.; Krause, W.; Hermann, J.; Hantschk, C.C.; Zangl, P.; Gleis, S.; Vortmeyer, D.; Orthmann, A. Application of active combustion instability control to a heavy duty gas turbine. J. Eng. Gas Turbines Power 1998, 120, 721–726. [Google Scholar] [CrossRef]
- Sattinger, S.S.; Neumeier, Y.; Nabi, A.; Zinn, B.T.; Amos, D.J.; Darling, D.D. Sub-scale demonstration of the active feedback control of gas turbine combustion instability. Trans. ASME 2000, 262, 262–268. [Google Scholar] [CrossRef]
- Mondal, S.; Chattopadhyay, A.; Mukhopadhyay, A.; Ray, A. Transfer learning of deep neural networks for predicting thermoacoustic instabilities in combustion systems. Energy AI 2021, 5, 10085. [Google Scholar] [CrossRef]
- Xie, M.; Zhao, X.; Zhao, D.; Fu, J.; Shelton, C.; Semlitsch, B. Predicting bifurcation and amplitude death characteristics of thermoacoustic instabilities from PINNs-derived van der Pol oscillators. J. Fluid Mech. 2024, 998, A46. [Google Scholar] [CrossRef]
- Zhao, D.; Lu, Z.; Ahao, H.; Li, X.Y.; Wang, B.; Liu, P. A review of active control approaches in stabilizing combustion systems in aerospace industry. Prog. Aerosp. Sci. 2018, 97, 35–60. [Google Scholar] [CrossRef]
- Campos-Delgado, D.U.; Zhou, K.; Allgood, D.; Acharya, S. Active control of combustion instabilities using model-based controllers. Combust. Sci. Technol. 2003, 175, 27–53. [Google Scholar] [CrossRef]
- Annaswamy, A.M.; Fleifil, M.; Hathout, J.P.; Ghoniem, A.F. Impact of linear coupling on the design of active controllers for thermoacoustic instability. Combust. Sci. Technol. 1997, 128, 131–180. [Google Scholar] [CrossRef]
- Hervas, J.R.; Zhao, D.; Reyhanoglu, M. Nonlinear feedback control of self-sustained thermoacoustic oscillations. Aerosp. Sci. Technol. 2015, 41, 209–215. [Google Scholar] [CrossRef]
- Hervas, J.R.; Reyhanoglu, M.; MacKunis, W. Sliding mode control of Rijke-type thermoacoustic systems. In Proceedings of the IEEE Workshop on Recent Advances in Sliding Modes (RASM), Istanbul, Turkey, 9–11 April 2015; pp. 1–6. [Google Scholar]
- Edwards, C.; Spurgeon, S.K. Sliding Mode Control. Theory and Applications; Taylor and Francis: Abingdon, Thames, UK, 1998. [Google Scholar]
- Kayacan, E. Sliding mode learning control of uncertain nonlinear systems with Lyapunov stability analysis. Trans. Inst. Meas. Control 2019, 41, 1750–1760. [Google Scholar] [CrossRef]
- Topalov, A.V.; Kaynak, O. Online learning in adaptive neurocontrol schemes with a sliding mode algorithm. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2001, 31, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Kayacan, E.; Kayacan, E.; Ramon, H.; Saeys, W. Learning in centralized nonlinear model predictive control: Application to an autonomous tractor-trailer system. IEEE Trans. Control Syst. Technol. 2014, 23, 197–205. [Google Scholar] [CrossRef]
- Kocer, B.B.; Tjahjowidodo, T.; Seet, G.G.L. Centralized predictive ceiling interaction control of quadrotor VTOL UAV. Aerosp. Sci. Technol. 2018, 76, 455–465. [Google Scholar] [CrossRef]
- Fu, C.; Hong, W.; Lu, H.; Zhang, L.; Guo, X.; Tian, Y. Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints. Aerosp. Sci. Technol. 2018, 78, 593–603. [Google Scholar] [CrossRef]
- Wu, B.; Wu, J.; He, W.; Tang, G.; Zhao, Z. Adaptive neural control for an uncertain 2-DOF helicopter system with unknown control direction and actuator faults. Mathematics 2022, 10, 4342. [Google Scholar] [CrossRef]
- Xu, Z.; Li, W.; Wang, Y. Robust learning control for shipborne manipulator with fuzzy neural network. Front. Neurorobotics 2019, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Kayacan, E.; Fossen, T.I. Feedback linearization control for systems with mismatched uncertainties via disturbance observers. Asian J. Control 2019, 21, 1064–1076. [Google Scholar] [CrossRef]
- Şahin, S. Learning feedback linearization using artificial neural networks. Neural Process. Lett. 2016, 44, 625–637. [Google Scholar] [CrossRef]
- Chi, R.; Hou, Z.; Huang, B.; Jin, S. A unified data-driven design framework of optimality-based generalized iterative learning control. Comput. Chem. Eng. 2015, 77, 10–23. [Google Scholar] [CrossRef]
- You, S.; Son, Y.S.; Gui, Y.; Kim, W. Gradient-descent-based learning gain for backstepping controller and disturbance observer of nonlinear systems. IEEE Access 2023, 11, 2743–2753. [Google Scholar] [CrossRef]
- Reyhanoglu, M.; Jafari, M. A simple learning approach for robust tracking control of a class of dynamical systems. Electronics 2023, 12, 2026. [Google Scholar] [CrossRef]
- Jafari, M.; Reyhanoglu, M.; Kozhabek, Z. Simple learning-based robust nonlinear control of an electric pump for liquid-propellant rocket engines. Electronics 2023, 12, 3527. [Google Scholar] [CrossRef]
- Reyhanoglu, M.; Jafari, M.; Rehan, M. Simple learning-based robust trajectory tracking control of a 2-DOF helicopter system. Electronics 2022, 11, 2075. [Google Scholar] [CrossRef]
- Hajiahmadi, F.; Jafari, M.; Reyhanoglu, M. Machine learning-based control of autonomous vehicles for solar panel cleaning systems in agricultural solar farms. AgriEngineering 2024, 6, 1417–1435. [Google Scholar] [CrossRef]
- Epperlein, J.P.; Bamieh, B.; Astrom, K.J. Thermoacoustics and the Rijke tube: Experiments, identification, and modeling. IEEE Control Syst. Mag. 2015, 35, 57–77. [Google Scholar]
- Fleifil, M.; Hathout, J.P.; Annaswamy, A.M.; Ghoniem, A.F. The origin of secondary peaks with active control of thermoacoustic instability. Combust. Sci. Technol. 1998, 133, 227–265. [Google Scholar] [CrossRef]
- Juniper, M.P. Triggering in the horizontal rijke tube: Non-normality, transient growth and bypass transition. J. Fluid Mech. 2011, 667, 272–308. [Google Scholar] [CrossRef]
- Matveev, K.I.; Culick, F.C. A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 2003, 185, 1059–1083. [Google Scholar] [CrossRef]
Variable | Symbol |
---|---|
Duct length | |
Hot wire location | |
Hot wire length | w |
Hot wire width | |
Hot wire temperature | |
Actuator location | |
Mean flow speed | |
Mean flow density | |
Mean flow temperature | |
Mean flow pressure | |
Mean flow sound speed | |
Mean flow Mach number | |
Specific heat capacity | |
Adiabatic index | |
Gas constant | R |
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
kg/m3 | W/m · K | ||||
719 | J/kg · K | - | |||
1 | m | m | |||
c | 344 | m/s | m/s | ||
295 | K | 1680 | K | ||
m | S | m | |||
Pa | - | ||||
- | - | ||||
- | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyhanoglu, M.; Jafari, M. Learning-Enabled Robust Control of Thermoacoustic Oscillations. Electronics 2025, 14, 1771. https://doi.org/10.3390/electronics14091771
Reyhanoglu M, Jafari M. Learning-Enabled Robust Control of Thermoacoustic Oscillations. Electronics. 2025; 14(9):1771. https://doi.org/10.3390/electronics14091771
Chicago/Turabian StyleReyhanoglu, Mahmut, and Mohammad Jafari. 2025. "Learning-Enabled Robust Control of Thermoacoustic Oscillations" Electronics 14, no. 9: 1771. https://doi.org/10.3390/electronics14091771
APA StyleReyhanoglu, M., & Jafari, M. (2025). Learning-Enabled Robust Control of Thermoacoustic Oscillations. Electronics, 14(9), 1771. https://doi.org/10.3390/electronics14091771