Microreactor Set-Ups for Screening of Droplet-Encapsulated Catalyst Particles: Fluidic and Electronic Interfacing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Acidity Screening Platform
3.1.1. Thermal Simulation of Heating of a Fluidic Channel in a Silicon–Glass Microreactor
3.1.2. Fluidic Set-Up and Electronic Interfacing
3.1.3. Electrical Circuit for Readout and Control of the Microheaters and Temperature Sensors
3.1.4. Fluorescence Measurements
3.2. Dielectrophoretic Sorting Platform
3.2.1. Fluidic Set-Up and Optical/Electronic Interfacing
3.2.2. Software for the Processing of the PMT Data and DEP Electrode Activation
3.2.3. Circuitry for Activation of the DEP Electrodes
4. Conclusions
- Custom Equipment
- Design Documents: CAD models, blueprints, and sketches.
- Simulations: Schematic of the model, physics/formula involved, boundary conditions and assumptions, simulation outcome, correlation with experiments.
- Calibration and Verification: Calibrate and verify custom-made sensors.
- Software: Provide code and functional description.
- Images: Provide photos and sketches of the complete set-up.
- Chemical Protocols
- Step-by-Step Images: Upon visible color/structure changes, include photos.
- Detailed Method: List chemicals, quantities/amounts, and conditions.
- Electronic Circuit Design
- Schematics: Include circuit diagrams and PCB design.
- Component List: Provide part numbers and specifications.
- Cleanroom Mask Design
- Mask Layout: Include high-resolution images or design files.
- Design Rules: Provide dimensions, tolerances, and process constraints.
- Fabrication Details: Describe materials used and manufacturing steps (process flow).
- Lab journal
- Obsidian (or other digital lab journal files) that can be put on, e.g., GitHub.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Lin, B.; Ge, L.; Guo, H.; Chen, X.; Lu, M. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene n a microfluidic reactor. Sci. Rep. 2016, 6, 28803. [Google Scholar] [CrossRef]
- Wang, N.; Tan, F.; Zhao, Y.; Tsoi, C.C.; Fan, X.; Yu, W.; Zhang, X. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions. Sci. Rep. 2016, 6, 28928. [Google Scholar] [CrossRef] [PubMed]
- Stasiewicz, K.A.; Jakubowska, I.; Moś, J.; Kosturek, R.; Kowiorski, K. In-line gas sensor based on the optical fiber taper technology with a graphene oxide layer. Electronics 2023, 12, 830. [Google Scholar] [CrossRef]
- Hengoju, S.; Shvydkiv, O.; Tovar, M.; Roth, M.; Rosenbaum, M.A. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics. Biosens. Bioelectron. 2022, 200, 113910. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; He, H.; Ma, H.; Wang, S.; Hu, S. A review of optical imaging technologies for microfluidics. Micromachines 2022, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Zhang, Y.; Liu, H.; Li, X.; Chang, J.; Zheng, H. Light recurrent unit: Towards an interpretable recurrent neural network for modeling long-range dependency. Electronics 2024, 13, 3204. [Google Scholar] [CrossRef]
- Barkalov, A.; Lemeshko, O.; Persikov, A.; Yeremenko, O.; Titarenko, L. Evaluation of traffic engineering routing models based on type of service in communication networks. Electronics 2024, 13, 3638. [Google Scholar] [CrossRef]
- Laudadio, G.; De Smet, W.; Struik, L.; Cao, Y.; Noël, T. Design and application of a modular and scalable electrochemical flow microreactor. J. Flow Chem. 2018, 8, 157–165. [Google Scholar] [CrossRef]
- Camacho López, C.O.; Fejes, Z.; Viskolcz, B. Microreactor assisted method for studying isocyanate-alcohol reaction kinetics. J. Flow Chem. 2019, 9, 199–204. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Luo, G. Kinetics determination of fast exothermic reactions with infrared thermography in a micoreactor. J. Flow Chem. 2020, 10, 219–226. [Google Scholar] [CrossRef]
- Pimparkar, K.; Yen, B.; Goodell, J.R.; Martin, V.I.; Lee, W.-H.; Porco, J.A., Jr.; Beeler, A.B.; Jensen, K.F. Development of a photochemical microfluidics platform. J. Flow Chem. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Rismanian, M.; Said Saidi, M.; Kashaninejad, N. A microfluidic concentration gradient generator for simultaneous delivery of two reagents on a millimeter-sized sample. J. Flow Chem. 2020, 10, 615–625. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, J.; Hu, X.; Chen, L.; Zuo, Y.; Yang, Y.; Jiang, F.; Sun, C.; Zhao, W.; Han, X. Rapid nitrate determination with a portable lab-on-chip device based on double microstructured assisted reactors. Lab Chip 2021, 21, 1109–1117. [Google Scholar] [CrossRef]
- Cook, S.R.; Musgrove, H.B.; Throckmorton, A.L.; Pompano, R.R. Microscale impeller pump for recirculating flow in organs-on-chip and microreactors. Lab Chip 2022, 22, 605–620. [Google Scholar] [CrossRef]
- Epps, R.W.; Felton, K.C.; Coley, C.W.; Abolhasani, M. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: Towards continuous nano-manufacturing. Lab Chip 2017, 23, 4040–4047. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, C.; Liu, B.; Chang, Y.; Pang, W.; Duan, X. A self-contained acoustofluidic platform for biomarker detection. Lab Chip 2022, 20, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Filatov, N.A.; Denisov, I.A.; Evstrapov, A.A.; Bukati, A.S. Open-source pressure controller based on compact electro-pneumatic regulators for droplet microfluidics applications. IEEE Trans. Instrum. Meas. 2022, 71, 4003910. [Google Scholar] [CrossRef]
- Yakimov, A.S.; Denisov, I.A.; Bukatin, A.S.; Lukyanenko, K.A.; Belousov, K.I.; Kukhtevich, I.V.; Esimbekov, E.N.; Evstrapov, A.A.; Belobrov, P.I. Droplet microfluidic device for chemoenzymatic sensing. Micromachines 2022, 13, 1146. [Google Scholar] [CrossRef]
- Jõemaa, R.; Gyimah, N.; Ashraf, K.; Pärmanets, K.; Zaft, A.; Scheler, O.; Rang, T.; Pardy, T. CogniFlow-Drop: Integrated modular system for automated generation of droplets in microfluidic applications. IEEE Access 2023, 11, 104905–104929. [Google Scholar] [CrossRef]
- Anshori, I.; Sarwono, F.Z.; Faiq, M.A.; Putra, N.K.; Suwardy, J.; Purwidyantri, A.; Prabowo, B.A. From design to performance: 3D printing-enabled optimization of low-cost droplet microfluidics. IEEE Sens. J. 2024, 24, 63–70. [Google Scholar] [CrossRef]
- van der Loh, M.; Schiffmann, M.; Polack, M.; Wink, K.; Belder, D. Coupling of droplet-on-demand microfluidics with ESI/MS to study single-cell catalysis. RSC Adv. 2024, 14, 25337–25346. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Wu, Z.; Liu, L.; Lu, Q.; Wang, P.; Huang, X.; Xu, Z. Piezoelectric-synchronized step emulsification for facile generation of microdroplet library with fluid-independent drop size regulation regime. Chem. Eng. J. 2024, 493, 152520. [Google Scholar] [CrossRef]
- Yu, D.; Hu, R.; Han, L.; Yang, J.; He, L. Principle and experimental study of a combined teardrop and heart-shaped channel bluffbody valveless piezoelectric pump. Rev. Sci. Instrum. 2024, 95, 065003. [Google Scholar] [CrossRef]
- Liao, W.; Wu, Z.; Lu, Q.; Wang, P.; Xu, Z.; Huang, X. Fluctuation-resistant microfluidic droplet generator based on multichannel constant flow regulator. Chem. Eng. Sci. 2025, 305, 121103. [Google Scholar] [CrossRef]
- Suryawanshi, P.L.; Gumfekar, S.P.; Bhanvase, B.A.; Sonawane, S.H.; Pimplapure, S. A review on microreactors: Reactor fabrication, design and cutting-edge applications. Chem. Eng. Sci. 2018, 189, 431–448. [Google Scholar] [CrossRef]
- Vollenbroek, J.C.; Nieuwelink, A.-E.; Bomer, J.G.; Tiggelaar, R.M.; Van den Berg, A.; Weckhuysen, B.M.; Odijk, M. Droplet microreactor for high-throughput fluorescence-based measurements of single catalyst particle acidity. Microsyst. Nanoeng. 2023, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Nieuwelink, A.-E.; Vollenbroek, J.C.; Tiggelaar, R.M.; Bomer, J.G.; Van den Berg, A.; Odijk, M.; Weckhuysen, B.M. High-throughput activity screening and sorting of single catalyst particles with a droplet microreactor using dielectrophoresis. Nat. Catal. 2021, 4, 1070–1079. [Google Scholar] [CrossRef]
- Zhong, B.L.R.; Pan, X.; Jiang, L.; Dai, Z.; Qin, J. Simply and reliably integrating micro heaters / sensors in a monolithic PCR-CE microfluidic genetic analysis system. Electrophoresis 2009, 30, 1297–1305. [Google Scholar] [CrossRef]
- Geitenbeek, R.G.; Vollenbroek, J.C.; Weijgertze, H.M.H.; Tregouet, C.B.M.; Nieuwelink, A.-E.; Kennedy, C.L.; Weckhuysen, B.M.; Lohse, D.; van Blaaderen, A.; van den Berg, A.; et al. Luminescence thermometry for in situ temperature measurements in microfluidic devices. Lab Chip 2019, 19, 1236–1246. [Google Scholar] [CrossRef]
- Tiggelaar, R.M.; Sanders, R.G.P.; Groenland, A.W.; Gardeniers, J.G.E. Stability of thin platinum films implemented in high-temperature microdevices. Sens. Actuators A 2009, 152, 39–47. [Google Scholar] [CrossRef]
- Gavoille, T.; Pannacci, N.F.; Bergeot, G.; Marliere, C.; Marre, S. Microfluidic approaches for accessing thermophysical properties of fluid systems. React. Chem. Eng. 2019, 4, 1721–1739. [Google Scholar] [CrossRef]
- Eggart, D.; Zimina, A.; Cavusoglu, G.; Casapu, M.; Doronkin, D.E.; Lomachenko, K.A.; Grunwaldt, J.-D. Versatile and high temperature spectroscope cell for operando fluorescence and transmission x-ray absorption spectroscopic studies of heterogeneous catalysts. Rev. Sci. Instrum. 2021, 92, 023106. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, T.; Kappe, C.O. Continuous flow organic synthesis under high temperature/high-pressure conditions. Chem. Asian, J. 2010, 5, 1274–1289. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, F.T.G.; Phisonkunkasem, T.; Asthana, A.; Bomer, J.G.; Van den Maagdenberg, A.M.J.M.; Tolner, E.A.; Odijk, M. A miniaturized push-pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain. Lab Chip 2019, 19, 1332–1343. [Google Scholar] [CrossRef]
- Vollenbroek, J.C.; Bomer, J.G.; van den Berg, A.; Odijk, M.; Nieuwelink, A.E.; Weckhuysen, B.M.; Geitenbeek, R.G.; Meijerink, A.; Tiggelaar, R.M. Design and characterization of a microreactor for monodisperse catalytic droplet generation at both elevated temperatures and pressures. In Proceedings of the 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Los Angeles, CA, USA, 9–12 April 2017; pp. 746–751. [Google Scholar] [CrossRef]
Thermal Conductivity (Wm−1K−1) | Density (kgm−3) | Thermal Capacity (Jkg−1K−1) | |
---|---|---|---|
Water | 0.6 | 1 | 4185.5 |
Silicon | 30 | 2329 | 700 |
Platinum | 71.6 | 21,450 | 133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vollenbroek, J.C.; Nieuwelink, A.-E.; Bomer, J.G.; van den Berg, A.; Weckhuysen, B.M.; Odijk, M.; Tiggelaar, R.M. Microreactor Set-Ups for Screening of Droplet-Encapsulated Catalyst Particles: Fluidic and Electronic Interfacing. Electronics 2025, 14, 1506. https://doi.org/10.3390/electronics14081506
Vollenbroek JC, Nieuwelink A-E, Bomer JG, van den Berg A, Weckhuysen BM, Odijk M, Tiggelaar RM. Microreactor Set-Ups for Screening of Droplet-Encapsulated Catalyst Particles: Fluidic and Electronic Interfacing. Electronics. 2025; 14(8):1506. https://doi.org/10.3390/electronics14081506
Chicago/Turabian StyleVollenbroek, Jeroen C., Anne-Eva Nieuwelink, Johan G. Bomer, Albert van den Berg, Bert M. Weckhuysen, Mathieu Odijk, and Roald M. Tiggelaar. 2025. "Microreactor Set-Ups for Screening of Droplet-Encapsulated Catalyst Particles: Fluidic and Electronic Interfacing" Electronics 14, no. 8: 1506. https://doi.org/10.3390/electronics14081506
APA StyleVollenbroek, J. C., Nieuwelink, A.-E., Bomer, J. G., van den Berg, A., Weckhuysen, B. M., Odijk, M., & Tiggelaar, R. M. (2025). Microreactor Set-Ups for Screening of Droplet-Encapsulated Catalyst Particles: Fluidic and Electronic Interfacing. Electronics, 14(8), 1506. https://doi.org/10.3390/electronics14081506