Flexible Resource Optimization for D2D XL-MIMO Communication via Adversarial Multi-Armed Bandit
Abstract
:1. Introduction
2. System Model and Problem Formulation
3. Joint Allocation Algorithm Based on Improved EXP3
3.1. Problem Reformulation
3.2. Phase One: Resource Allocation for DGs
Algorithm 1: Subcarrier allocation algorithm for CUs. |
Algorithm 2: Joint subcarrier and power allocation algorithm based on improved Exp3 and DG d. |
3.3. Phase Two: Greedy Power Reallocation for CUs
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSAPP | heuristic subcarrier assignment and proposed power allocation |
CAFIL | channel allocation scheme using full information of device locations |
6G | sixth-generation |
XL-MIMO | extremely large-scale multi-input and multi-output |
BS | base station |
D2D | device-to-device |
MD2D | multicast device-to-device |
QoS | quality of service |
DG | device-to-device group |
SINR | signal-to-interference-plus-noise ratio |
M2M | many-to-many |
CU | cellular user |
RL | reinforcement learning |
MAB | multi-armed bandit |
AMAB | adversarial multi-armed bandit |
MP-MAB | multi-player multi-armed bandit |
MINLP | mixed-integer nonlinear programming |
4D | four-dimensional |
DR | D2D receiver |
DT | D2D transmitter |
PMF | probability mass function |
References
- Dao, N.N.; Pham, Q.V.; Tu, N.H.; Thanh, T.T.; Bao, V.N.Q.; Lakew, D.S.; Cho, S. Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure. IEEE Commun. Surv. Tutor. 2021, 23, 1193–1225. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, requirements, key technologies, and testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Lu, H.; Zeng, Y.; You, C.; Han, Y.; Zhang, J.; Wang, Z.; Dong, Z.; Jin, S.; Wang, C.X.; Jiang, T.; et al. A tutorial on near-field XL-MIMO communications towards 6G. IEEE Commun. Surv. Tutor. 2024, 26, 2213–2257. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Cui, M.; Wu, Z.; Lu, Y.; Wei, X.; Dai, L. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions. IEEE Commun. Mag. 2022, 61, 40–46. [Google Scholar] [CrossRef]
- Chukhno, N.; Chukhno, O.; Moltchanov, D.; Gaydamaka, A.; Samuylov, A.; Molinaro, A.; Koucheryavy, Y.; Iera, A.; Araniti, G. The use of machine learning techniques for optimal multicasting in 5G NR systems. IEEE Trans. Broadcast. 2022, 69, 201–214. [Google Scholar] [CrossRef]
- Ansari, R.I.; Chrysostomou, C.; Hassan, S.A.; Guizani, M.; Mumtaz, S.; Rodriguez, J.; Rodrigues, J.J. 5G D2D networks: Techniques, challenges, and future prospects. IEEE Syst. J. 2017, 12, 3970–3984. [Google Scholar] [CrossRef]
- Chen, Y.; He, S.; Hou, F.; Shi, Z.; Chen, J. An efficient incentive mechanism for device-to-device multicast communication in cellular networks. IEEE Trans. Wirel. Commun. 2018, 17, 7922–7935. [Google Scholar] [CrossRef]
- Afolabi, R.O.; Dadlani, A.; Kim, K. Multicast scheduling and resource allocation algorithms for OFDMA-based systems: A survey. IEEE Commun. Surv. Tutor. 2012, 15, 240–254. [Google Scholar] [CrossRef]
- Sampath, H.; Talwar, S.; Tellado, J.; Erceg, V.; Paulraj, A. A fourth-generation MIMO-OFDM broadband wireless system: Design, performance, and field trial results. IEEE Commun. Mag. 2002, 40, 143–149. [Google Scholar] [CrossRef]
- Kim, J.h.; Joung, J.; Lee, J.W. Resource allocation for multiple device-to-device cluster multicast communications underlay cellular networks. IEEE Commun. Lett. 2017, 22, 412–415. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Agnihotri, S. A resource allocation scheme for multiple device-to-device multicasts in cellular networks. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–6. [Google Scholar]
- Meshgi, H.; Zhao, D.; Zheng, R. Joint channel and power allocation in underlay multicast device-to-device communications. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 2937–2942. [Google Scholar]
- Gong, W.; Wang, X. Particle swarm optimization based power allocation schemes of device-to-device multicast communication. Wireless Pers. Commun. 2015, 85, 1261–1277. [Google Scholar] [CrossRef]
- Palla, R.K.; Amudala, D.N.; Budhiraja, R. Analysis of URLLC-Enabled Hardware-Impaired Massive MIMO Relaying With D2D Users. IEEE Trans. Veh. Technol. 2024, 73, 10026–10043. [Google Scholar] [CrossRef]
- Hamdi, M.; Zaied, M. Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast communications. Appl. Soft Comput. 2019, 83, 105605. [Google Scholar] [CrossRef]
- Elnourani, M.; Deshmukh, S.; Beferull-Lozano, B. Distributed Resource Allocation in Underlay Multicast D2D Communications. IEEE Trans. Commun. 2021, 69, 3409–3422. [Google Scholar] [CrossRef]
- Xu, W.; An, J.; Li, H.; Gan, L.; Yuen, C. Algorithm-unrolling-based distributed optimization for RIS-assisted cell-free networks. IEEE Internet Things J. 2023, 11, 944–957. [Google Scholar] [CrossRef]
- Zhang, H.; Shlezinger, N.; Guidi, F.; Dardari, D.; Imani, M.F.; Eldar, Y.C. Beam Focusing for Near-Field Multiuser MIMO Communications. IEEE Trans. Wirel. Commun. 2022, 21, 7476–7490. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, C.; Jin, Y.; Zhou, L.; Wei, Q. Hybrid-field channel estimation for extremely large-scale massive MIMO system. IEEE Commun. Lett. 2022, 27, 303–307. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Chai, K.K.; Wang, C.X.; Schober, R.; You, X. Performance Analysis and Low-Complexity Design for XL-MIMO with Near-Field Spatial Non-Stationarities. IEEE J. Sel. Areas Commun. 2024, 42, 1656–1672. [Google Scholar] [CrossRef]
- Gao, M.; Xu, L.; Huang, W. Optimal Resource Allocation for D2D Multicast Communications for XL-MIMO Systems. IEEE Access 2024, 12, 161519–161529. [Google Scholar] [CrossRef]
- De Curtò, J.; de Zarzà, I.; Roig, G.; Cano, J.C.; Manzoni, P.; Calafate, C.T. LLM-informed multi-armed bandit strategies for non-stationary environments. Electronics 2023, 12, 2814. [Google Scholar] [CrossRef]
- Hashima, S.; Fouda, M.M.; Hatano, K.; Takimoto, E. Advanced Learning Schemes for Metaverse Applications in B5G/6G Networks. In Proceedings of the 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, 26–28 June 2023; pp. 799–804. [Google Scholar] [CrossRef]
- Nomikos, N.; Charalambous, T.; Trakadas, P.; Wichman, R. Bandit-Based Learning-Aided Full-Duplex/Half-Duplex Mode Selection in 6G Cooperative Relay Networks. IEEE Open J. Commun. Soc. 2024, 5, 1415–1429. [Google Scholar] [CrossRef]
- Yang, W.; Cai, L.; Shu, S.; Sepahi, A.; Huang, Z.; Pan, J. QoS-driven Contextual MAB for MPQUIC Supporting Video Streaming in Mobile Networks. IEEE Trans. Mob. Comput. 2024, 24, 3274–3287. [Google Scholar] [CrossRef]
- Salah, M.M.; Saad, R.S.; Zaki, R.M.; Rabie, K.; ElHalawany, B.M. Multi-Armed Bandits for Resource Allocation in UAV-Assisted LoRa Networks. IEEE Internet Things Mag. 2025, 8, 40–45. [Google Scholar] [CrossRef]
- Hashima, S.; Fadlullah, Z.M.; Fouda, M.M.; Mohamed, E.M.; Hatano, K.; ElHalawany, B.M.; Guizani, M. On softwarization of intelligence in 6G networks for ultra-fast optimal policy selection: Challenges and opportunities. IEEE Netw. 2022, 37, 190–197. [Google Scholar] [CrossRef]
- Hashima, S.; ElHalawany, B.M.; Hatano, K.; Wu, K.; Mohamed, E.M. Leveraging machine-learning for D2D communications in 5G/beyond 5G networks. Electronics 2021, 10, 169. [Google Scholar] [CrossRef]
- Ortiz, A.; Asadi, A.; Engelhardt, M.; Klein, A.; Hollick, M. CBMoS: Combinatorial bandit learning for mode selection and resource allocation in D2D systems. IEEE J. Sel. Areas Commun. 2019, 37, 2225–2238. [Google Scholar] [CrossRef]
- Zhang, W.; Song, Y.; Liu, C.; Huang, Z.; Qian, M. Hybrid-Field Channel Estimation for XL-MIMO: A Proximal Gradient Algorithm on the Fixed-Rank Matrix Manifold. In Proceedings of the ICC 2024-IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 3122–3127. [Google Scholar]
- Qian, M.; Li, C.; Ma, Y.; Song, Y.; Liu, C.; Yin, Z. A Contextual MAB-Based Two-Timescale Scheme for RIS-Assisted Systems. IEEE Wirel. Commun. Lett. 2024, 14, 400–404. [Google Scholar] [CrossRef]
- Liang, H.; Liu, C.; Song, Y.; Gao, T.; Zou, Y. Neighbor-based joint spatial division and multiplexing in massive MIMO: User scheduling and dynamic beam allocation. EURASIP J. Adv. Signal Process. 2024, 2024, 1. [Google Scholar] [CrossRef]
- Tong, J.; Fu, L.; Han, Z. Throughput enhancement of full-duplex CSMA networks via adversarial multi-player multi-armed bandit. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
Reference | Apply XL-MIMO | Support M2M | Dynamic Environment | Resource Allocation | Mode Selection | Neighbor Discovery | Apply RL |
---|---|---|---|---|---|---|---|
[12] | ✓ | ||||||
[18] | ✓ | ||||||
[23] | ✓ | ✓ | ✓ | ||||
[30] | ✓ | ✓ | |||||
[31] | ✓ | ✓ | ✓ | ||||
Present paper | ✓ | ✓ | ✓ | ✓ | ✓ |
Notation | Definition |
---|---|
N | Number of BS antenna |
K | Number of CUs |
D | Number of DGs |
M | Number of receiving devices within DG |
Antenna element spacing of BS | |
Z | Rayleigh distance |
Near-field channel from CU k to BS | |
Channel between transmitting device and receiving devices m within DG d | |
Channel gain from CU k to BS on subcarrier c | |
Channel gain from the transmitting device in DG d to BS on subcarrier c | |
Channel gain from CU k to the receiving devices m in DG d on subcarrier c | |
Channel gain from the transmitting device in DG d to receiving devices m on subcarrier c | |
Required transmission rate of CUs | |
Maximum power threshold of CUs | |
Maximum power threshold of DGs |
Parameters | Value |
---|---|
Cellular cell radius R | 200 m |
Maximum radius of DGs | 20 m |
Position of CUs and users of DGs | Uniformly distributed in the semicircle of |
Number of CUs K | 9 |
Number of DGs D | 3 |
Number of receiving devices M within each DG | 3 |
Number of BS antennas | 512 |
Number of subcarriers C | 10 |
Path loss constant | 2.2 |
Number of multipaths L | 3 |
Carrier center frequency | 30 GHz |
Maximum power of CUs | 20 dBm |
Maximum power of DGs | 17 dBm |
Data rate requirement of CUs | 1 bps/Hz |
SINR | 20 dB |
Time period T | 1000 slots |
Algorithm | Computational Complexity |
---|---|
JSPAA-IExp3 | |
HSAPP | |
CAFIL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, Z.; Ma, C.; Song, Y.; Liu, M.; Liang, H. Flexible Resource Optimization for D2D XL-MIMO Communication via Adversarial Multi-Armed Bandit. Electronics 2025, 14, 1498. https://doi.org/10.3390/electronics14081498
Jian Z, Ma C, Song Y, Liu M, Liang H. Flexible Resource Optimization for D2D XL-MIMO Communication via Adversarial Multi-Armed Bandit. Electronics. 2025; 14(8):1498. https://doi.org/10.3390/electronics14081498
Chicago/Turabian StyleJian, Zhaomin, Chao Ma, Yunchao Song, Mengshuang Liu, and Huibin Liang. 2025. "Flexible Resource Optimization for D2D XL-MIMO Communication via Adversarial Multi-Armed Bandit" Electronics 14, no. 8: 1498. https://doi.org/10.3390/electronics14081498
APA StyleJian, Z., Ma, C., Song, Y., Liu, M., & Liang, H. (2025). Flexible Resource Optimization for D2D XL-MIMO Communication via Adversarial Multi-Armed Bandit. Electronics, 14(8), 1498. https://doi.org/10.3390/electronics14081498