Non-Invasive Blood Pressure Estimation Using Multi-Domain Pulse Wave Features and Random Forest Regression
Abstract
:1. Introduction
- Develop a flexible piezoelectric pressure sensor and its supporting measurement circuit to measure pulse wave signals.
- Design pulse wave signal processing methods, including signal denoising, feature point calibration and baseline drift processing, and extract features with physiological significance for building machine learning models.
- Construct a variety of machine learning regression models to estimate systolic/diastolic blood pressure, select and optimize the best model and realize the mapping of complex multidimensional pulse wave features to blood pressure values. The research process is shown in Figure 1.
2. Materials and Methods
2.1. Preparation of Flexible Pressure Sensor
2.2. Measurement System Design
2.3. Data Acquisition
3. Pulse Signal Processing and Feature Extraction
3.1. Signal Preprocessing
- The signal value of T1 time on the left side of Sn is greater than Sval.
- The signal value of T2 time on the right side of Sn is greater than Sval.
3.2. Pulse Wave Feature Point Calibration
3.3. Pulse Wave Multi-Domain Feature Extraction
3.3.1. Time Domain Features
3.3.2. Frequency Domain Features
3.3.3. Wavelet Domain Features
4. Machine Learning Regression
4.1. Model Training and Testing
- Time domain features: t1, t3, t4, T, h1, h3, h4, t1/T, t3/t4, h3/h1, h4/h1, Pav, Sa, Sr.
- Frequency domain features: SER5, SER10, SER15, EE, Fav, Fstd.
- Wavelet domain features: EP1–EP8.
- Subjects’ physical characteristics: BMI, body temperature, sex, age.
4.2. Model Optimization
- Number of decision trees: a reasonable choice of this parameter can strike a balance between model complexity and computational efficiency.
- Maximum tree depth: reasonable parameters can avoid underfitting and overfitting.
- Minimum number of node split samples: a smaller value will make the tree grow deeper, while a larger value will limit the tree’s growth and reduce the risk of overfitting.
- Minimum sample number of leaf nodes: a small value may lead to an increase in the number of leaf nodes, making the model more flexible but easy to overfit, while a larger value will enhance the regularization ability of the model and improve the generalization performance [38].
4.3. Result Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAMI | Association for the Advancement of Medical Instrumentation |
PPG | Photoelectric volumetric pulse wave labeling |
ML | Machine learning |
PVDF | polyvinylidene fluoride |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
EE | Energy entropy |
SER | Spectral energy ratio |
EP | Energy proportion |
MLP | Multilayer perceptron |
KNN | K-nearest neighbor network regression |
RF | Random forest |
EN | Elastic network |
BYS | Bayesian |
RMSE | Root mean square error |
MAE | Mean absolute error |
MAPE | mean absolute percentage error |
PCA | principal component analysis |
References
- Thomas, B.; Gabriele, K.K.; Gaia, K.; Harsha, M.; Markus, S.; Aletta, E.; George, S.S.; Ji, G.W.; Marcos, J.M.; Rafael, H.H.; et al. May Measurement Month 2022: Results from the global blood pressure screening campaign. BMJ Glob. Health 2024, 9, e016557. [Google Scholar]
- Sliwa, K.; Ojji, D.; Bachelier, K.; Böhm, M.; Damasceno, A.; Stewart, S. Hypertension and hypertensive heart disease in African women. Clin. Res. Cardiol. 2014, 103, 515–523. [Google Scholar] [PubMed]
- Stantliff, T.M.; Salindri, A.D.; Egoavil, E.R. Abnormal blood pressure among individuals evaluated for tuberculosis infection in a U.S. public health tuberculosis clinic. Epidemiol. Infect. 2024, 152, 133. [Google Scholar]
- Kang, W.; Pineda Hernández, S. Understanding Cognitive Deficits in People with High Blood Pressure. J. Pers. Med. 2023, 13, 1592. [Google Scholar] [CrossRef]
- Lurbe, E.; Mancia, G.; Calpe, J. Joint statement for assessing and managing high blood pressure in children and adolescents: Chapter 1. How to correctly measure blood pressure in children and adolescents. Front. Pediatr. 2023, 11, 40–57. [Google Scholar]
- Jiang, Z.; Li, S.; Wang, L. A comparison of invasive arterial blood pressure measurement with oscillometric non-invasive blood pressure measurement in patients with sepsis. J. Anesth. 2024, 38, 222–231. [Google Scholar]
- Diaz, A.; Zócalo, Y.; Salazar, F.; Bia, D. Non-invasive central aortic pressure measurement: What limits its application in clinical practice? Front. Cardiovasc. Med. 2023, 10, 43–59. [Google Scholar]
- Bogatu, L.I.; Turco, S.; Mischi, M.; Muehlsteff, J.; Woerlee, P. An Experimental Study on the Blood Pressure Cuff as a Transducer for Oscillometric Blood Pressure Measurements. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar]
- Marks, L.A.; Groch, A. Optimizing cuff width for noninvasive measurement of blood pressure. Blood Press. Monit. 2000, 5, 153–158. [Google Scholar]
- Celler, B.G.; Yong, A.; Rubenis, I.; Butlin, M.; Argha, A.; Rehan, R.; Avolio, A. Evaluation of the oscillometric method for noninvasive blood pressure measurement during cuff deflation and cuff inflation with reference to intra-arterial blood pressure. J. Hypertens. 2024, 42, 1235–1247. [Google Scholar]
- Zhang, Y.F. Research on Pulse Signal Acquisition and Analysis Based on Piezoelectric Sensing. Master’s Thesis, South China University of Technology, Guangzhou, China, 2023. [Google Scholar]
- Yuan, B. Design of blood pressure measurement system based on pulse wave conduction time. Digit. Technol. Appl. 2016, 10, 159. [Google Scholar]
- Yao, Y.; Zhou, S.; Alastruey, J.; Hao, L.; Greenwald, S.E.; Zhang, Y.; Xu, L.; Xu, L.; Yao, Y. Estimation of central pulse wave velocity from radial pulse wave analysis. Comput. Methods Programs Biomed. 2022, 219, 17. [Google Scholar]
- Yi, Z.; Liu, Z.; Li, W.; Ruan, T.; Chen, X.; Liu, J.; Yang, B.; Zhang, W. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring. Adv. Mater. 2022, 34, 16–27. [Google Scholar]
- Andreozzi, E.; Sabbadini, R.; Centracchio, J.; Bifulco, P.; Irace, A.; Breglio, G.; Riccio, M. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. Sensors 2022, 22, 7566. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-T.; Chen, W.-H.; Lin, Y.-H. A Pulse Rate Detection Method for Mouse Application Based on Multi-PPG. Sensors. Sensors 2017, 17, 1628. [Google Scholar] [CrossRef]
- Li, Q.L. Research on Tactile Type Recognition Based on Piezoelectric Film Sensor. Master’s Thesis, Jilin University, Changchun, China, 2024. [Google Scholar]
- Li, H.B. Performance Optimization and Embedded Design Development of PVDF Flexible Piezoelectric Films. Master’s Thesis, Henan University, Zhengzhou, China, 2023. [Google Scholar]
- Zhu, Z.M. Research on Multi-Frequency Domain Multi-Feature Identity Recognition Method and System Based on PPG and ECG Signals. Master’s Thesis, Nanjing University of Posts and Telecommunications, Nanjing, China, 2023. [Google Scholar]
- Tian, S.; Wang, L.; Zhu, R. A flexible multimodal pulse sensor for wearable continuous blood pressure monitoring. Mater. Horiz. 2024, 11, 2428–2437. [Google Scholar] [PubMed]
- Wang, X.; Wu, G.; Zhang, Z. Traditional Chinese Medicine (TCM)-Inspired Fully Printed Soft Pressure Sensor Array with Self-Adaptive Pressurization for Highly Reliable Individualized Long-Term Pulse Diagnostics. Adv. Mater. 2024, 10, 241–254. [Google Scholar]
- Mou, H.; Yu, J. CNN-LSTM Prediction Method for Blood Pressure Based on Pulse Wave. Electronics 2021, 10, 1664. [Google Scholar] [CrossRef]
- Gu, J.; Xu, S.D.; Lu, X.L. Study on the membrane formation mechanism of PVDF/PVDF-CTFE blends. J. Taiwan Inst. Chem. Eng. 2023, 142, 1070–1076. [Google Scholar]
- Zou, D.; Xia, L.B.; Luo, P.; Guan, K.C.; Hideto, M.; Zhong, Z.X. Fabrication of hydrophobic bi-layer fiber-aligned PVDF/PVDF-PSF membranes using green solvent for membrane distillation. Desalination 2023, 565, 64–81. [Google Scholar]
- Cao, C.J.; Lai, K.X.; Wang, X.S. Design of wearable pulse sensor based on flexible piezoelectric film. J. Electron. Meas. Instrum. 2012, 38, 35–47. [Google Scholar]
- Wang, T.W.; Lin, S.F. Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement. Sensors 2020, 20, 851. [Google Scholar] [CrossRef] [PubMed]
- Guo, B. Pulse Detection System Based on Flexible Pressure Sensor. Master’s Thesis, Nanjing University, Nanjing, China, 2021. [Google Scholar]
- Wang, R.; Li, J.; Wang, H.; Deng, S.; He, C.; Miljevic, B.; Ristovski, Z.; Wang, B. Development and Validation of the Particle into Nitroxide Quencher System with BPEAnit Probe for High-Sensitivity Reactive Oxygen Species Detection in Atmospheric Monitoring. Sensors 2025, 25, 1129. [Google Scholar] [CrossRef]
- Dong, X.H. Study on the Influence Mechanism of Controlled Contact Pressure on Pulse Wave Signal of Photoelectric Volume. Master’s Thesis, Guilin University of Electronic Technology, Guilin, China, 2023. [Google Scholar]
- Zhang, Y.L. Research on Flexible Pressure Sensor Array for Pulse Detection. Master’s Thesis, Soochow University, Suzhou, China, 2020. [Google Scholar]
- Tian, C.W.; Zheng, M.H.; Zuo, W.M.; Zhang, B.; Zhang, Y.N.; Zhang, D. Multi-stage image denoising with the wavelet transform. Pattern Recognit. 2023, 134, 109050. [Google Scholar] [CrossRef]
- Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar]
- McAlexander, R.J.; Mentch, L. Predictive inference with random forests: A new perspective on classical analyses. Res. Politics 2020, 7, 20–56. [Google Scholar] [CrossRef]
- Tudor, C.; Sova, R.; Stamatiou, P.; Vlachos, V.; Polychronidou, P. Future-Proofing EU-27 Energy Policies with AI: Analyzing and Forecasting Fossil Fuel Trends. Electronics 2025, 14, 631. [Google Scholar] [CrossRef]
- Daniel, B.; Bent, J.C.; Nicolaj, S.M.; Mikkel, S.N. Targeting predictors in random forest regression. Int. J. Forecast. 2023, 39, 841–868. [Google Scholar]
- Mizumoto, A. Calculating the relative importance of multiple regression predictor variables using dominance analysis and random forests. Lang. Learn. 2022, 73, 161–196. [Google Scholar] [CrossRef]
- Yi, L.; Zou, C.; Berecibar, M.; Nanini-Maury, E.; Chan, J.C.; Van den Bossche, P.; Van Mierlo, J.; Omar, N. Random Forest regression for online capacity estimation of lithium-ion batteries. Appl. Energy 2018, 232, 197–210. [Google Scholar]
- Ali, N.; Chen, J.; Fu, X.; Ali, R.; Hussain, M.A.; Daud, H.; Hussain, J.; Altalbe, A. Integrating Machine Learning Ensembles for Landslide Susceptibility Mapping in Northern Pakistan. Remote Sens. 2024, 16, 988. [Google Scholar] [CrossRef]
Characteristic (Unit) | Mean ± Standard Deviation |
---|---|
Systolic blood pressure (mmHg) | 108.4 ± 10.23 |
Diastolic blood pressure (mmHg) | 67.9 ± 10.98 |
Heart rate (times/minute) | 68.8 ± 11.3 |
Body mass index (kg/m2) | 22.6 ± 5.3 |
Body surface temperature (°C) | 35.9 ± 0.53 |
Age (year) | 22.3 ± 5.7 |
Construction Parameter | Physiological Significance |
---|---|
h3/h1 | Reflect the peripheral resistance of aortic wall |
h4/h1 | Reflect ventricular valve function and aortic compliance |
t1/T | Reflect cardiac ejection |
t3/t4 | Correlate with cardiac fluctuation frequency |
Pav | Mean value of arterial pressure (pulse wave) |
Machine Learning Model | RMSE | MAE | MAPE | R2 | Training Duration | |
---|---|---|---|---|---|---|
Multilayer perceptron | SBP | 4.800 | 3.960 | 3.58% | 0.741 | 0.109 s |
DBP | 2.739 | 2.073 | 2.99% | 0.855 | 0.109 s | |
K-nearest neighbor network regression | SBP | 7.582 | 6.122 | 5.50% | 0.208 | 0.002 s |
DBP | 5.222 | 4.357 | 5.73% | 0.161 | 0.002 s | |
Random forest regression | SBP | 3.077 | 2.719 | 2.49% | 0.881 | 0.057 s |
DBP | 2.058 | 1.628 | 2.10% | 0.896 | 0.055 s | |
Elastic network regression | SBP | 3.357 | 2.981 | 2.67% | 0.847 | 0.102 s |
DBP | 2.477 | 1.823 | 2.37% | 0.879 | 0.100 s | |
Bayesian regression | SBP | 7.589 | 5.926 | 5.20% | 0.294 | 0.027 s |
DBP | 5.670 | 4.596 | 5.97% | 0.273 | 0.016 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, E.; Nie, B.; Cao, Z.; Yu, Z.; Li, S.; Lu, Y.; Yu, C.; Yin, N. Non-Invasive Blood Pressure Estimation Using Multi-Domain Pulse Wave Features and Random Forest Regression. Electronics 2025, 14, 1409. https://doi.org/10.3390/electronics14071409
Jiang E, Nie B, Cao Z, Yu Z, Li S, Lu Y, Yu C, Yin N. Non-Invasive Blood Pressure Estimation Using Multi-Domain Pulse Wave Features and Random Forest Regression. Electronics. 2025; 14(7):1409. https://doi.org/10.3390/electronics14071409
Chicago/Turabian StyleJiang, Enze, Baoqing Nie, Ziqiong Cao, Zihan Yu, Siyu Li, Yun Lu, Chuanhao Yu, and Niyuan Yin. 2025. "Non-Invasive Blood Pressure Estimation Using Multi-Domain Pulse Wave Features and Random Forest Regression" Electronics 14, no. 7: 1409. https://doi.org/10.3390/electronics14071409
APA StyleJiang, E., Nie, B., Cao, Z., Yu, Z., Li, S., Lu, Y., Yu, C., & Yin, N. (2025). Non-Invasive Blood Pressure Estimation Using Multi-Domain Pulse Wave Features and Random Forest Regression. Electronics, 14(7), 1409. https://doi.org/10.3390/electronics14071409