On the Design of Effective New Radio Sounding Reference Signal-Based Channel Estimation: Linear Regression with Channel Impulse Response Refinement
Abstract
:1. Introduction
2. System Model
2.1. Channel Model
2.2. Conventional Channel Estimation Schemes
3. Preliminaries on Linear Regression–Based Channel Estimation
3.1. Polynomial Regression–Based Channel Estimation
3.2. DFT Regression–Based Channel Estimation
4. Design of Effective NR-SRS Based Channel Estimation
4.1. Thresholding-Based CIR Refinement
4.1.1. Maximum Power Thresholding-Based CIR Refinement
4.1.2. Average Power Thresholding-Based CIR Refinement
4.2. Regression–Based Channel Estimation with CIR Refinement
4.3. Computational Complexity
4.4. Discussion
5. Numerical Results
5.1. Simulation Environment
5.2. Performance Evaluation
5.2.1. The Effectiveness of the CIR Refinement on Regression Based CE
5.2.2. Execution Time
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATCR | Average power Thresholding-based Channel impulse response Refinement |
AWGN | Additive White Gaussian Noise |
CFR | Channel Frequency Response |
CIR | Channel Impulse Response |
CP | Cylic Prefix |
DFT | Discrete Fourier Transform |
DRCE | DFT regression–based Channel Estimation |
FFT | Fast Fourier Transform |
IFFT | Inverse FFT |
LMMSE | Linear Minimum Mean Square Error |
LS | Least Squares |
MIMO | Multiple-Input Multiple-Output |
MSE | Mean Square Error |
MTCR | Maximum power Thresholding-based CR |
NMSE | Normalized MSE |
NR | New Radio |
NTCR | Noise-standard-deviation Thresholding for CR |
OFDMA | Orthogonal Frequency Division Multiple Access |
PRCE | Polynomial regression–based Channel Estimation |
SISO | Single-Input Single-Output |
SNR | Signal-to-Noise Ratio |
SRS | Sounding Reference Signal |
STCR | Sub-optimal Thresholding for CR |
WTCR | Weighted noise Thresholding based CR |
ZP | Zero Padding |
References
- Matthaiou, M.; Yurduseven, O.; Ngo, H.Q.; Morales-Jimenez, D.; Cotton, S.L.; Fusco, V.F. The Road to 6G: Ten Physical Layer Challenges for Communications Engineers. IEEE Commun. Mag. 2021, 59, 64–69. [Google Scholar]
- Chen, Z.; Han, C.; Wu, Y.; Li, L.; Huang, C.; Zhang, Z.; Wang, G.; Tong, W. Terahertz Wireless Communications for 2030 and Beyond: A Cutting-Edge Frontier. IEEE Commun. Mag. 2021, 59, 66–72. [Google Scholar]
- Chataut, R.; Akl, R. Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef] [PubMed]
- 3GPP TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation. Available online: https://www.3gpp.org/ftp/Specs/archive/36_series/36.211/36211-h40.zip (accessed on 15 January 2024).
- 3GPP TR 38.211. Nr; Physical Channels and Modulation. Available online: https://www.3gpp.org/ftp/Specs/archive/38_series/38.211/38211-h70.zip (accessed on 24 March 2024).
- Kalachikov, A.; Stenin, A. Performance Evaluation of the SRS Based MIMO Channel Estimation on 5G NR Open Source Channel Model. In Proceedings of the 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM), Souzga, Russia, 16 August 2021; pp. 124–127. [Google Scholar]
- Sun, B.; Tan, B.; Ashraf, M.; Valkama, M.; Lohan, E.S. Embedding the Localization and Imaging Functions in Mobile Systems: An Airport Surveillance Use Case. IEEE Open J. Commun. Soc. 2022, 3, 1656–1671. [Google Scholar] [CrossRef]
- Sengupta, A.; Davydov, A.; Wang, G.; Pawar, S.; Morozov, G. Low PAPR DM-RS Design for 5G Systems Operating in High Frequency Bands. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Liu, F.; Zhang, J.; Jiang, P.; Wen, C.-K.; Jin, S. CE-ViT: A Robust Channel Estimator Based on Vision Transformer for OFDM Systems. In Proceedings of the GLOBECOM 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 4798–4803. [Google Scholar]
- Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep Learning-Based Channel Estimation. IEEE Commun. Lett. 2019, 23, 652–655. [Google Scholar]
- Li, M.; Zhang, S.; Ge, Y.; Gao, F.; Fan, P. Joint Channel Estimation and Data Detection for Hybrid RIS Aided Millimeter Wave OTFS Systems. IEEE Trans. Commun. 2022, 70, 6832–6848. [Google Scholar] [CrossRef]
- Wang, X.; Liu, K.J.R. Channel estimation for multicarrier modulation systems using a time-frequency polynomial model. IEEE Trans. Commun. 2002, 50, 1045–1048. [Google Scholar] [CrossRef]
- Chang, M.X.; Su, Y.T. Model-based channel estimation for OFDM signals in Rayleigh fading. IEEE Trans. Commun. 2002, 50, 540–544. [Google Scholar] [CrossRef]
- Chang, M.X.; Su, Y.T. 2D regression channel estimation for equalizing OFDM signals. In Proceedings of the IEEE Vehicular Technology, Tokyo, Japan, 15–18 May 2000; pp. 240–244. [Google Scholar]
- Hijazi, H.; Ros, L. Polynomial Estimation of Time-Varying Multipath Gains with Intercarrier Interference Mitigation in OFDM Systems. IEEE Trans. Veh. Technol. 2009, 58, 140–151. [Google Scholar]
- Morelli, M.; Mengali, U. A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Trans. Signal Process. 2001, 49, 3065–3073. [Google Scholar] [CrossRef]
- Ancora, A.; Bona, C.; Slock, D.T.M. Down-Sampled Impulse Response Least-Squares Channel Estimation for LTE OFDMA. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07, Honolulu, HI, USA, 15–20 April 2007; pp. III–293–III–296. [Google Scholar]
- Minn, H.; Bhargava, V.K. An investigation into time-domain approach for OFDM channel estimation. IEEE Trans. Broadcast. 2000, 46, 240–248. [Google Scholar] [CrossRef]
- Rosati, S.; Corazza, G.E.; Vanelli-Coralli, A. OFDM Channel Estimation with Optimal Threshold-Based Selection of CIR Samples. In Proceedings of the 2009 IEEE Global Telecommunications Conference (GLOBECOM 2009), Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–7. [Google Scholar]
- Rosati, S.; Corazza, G.E.; Vanelli-Coralli, A. OFDM Channel Estimation Based on Impulse Response Decimation: Analysis and Novel Algorithms. IEEE Trans. Commun. 2012, 60, 1996–2008. [Google Scholar] [CrossRef]
- Xie, H.; Andrieux, G.; Wang, Y.; Diouris, J.F.; Feng, S. Efficient Time Domain Threshold for Sparse Channel Estimation in OFDM System. AEU-Int. J. Electron. Commun. 2014, 68, 277–281. [Google Scholar]
- Sure, P.; Bhuma, C.M. Weighted-noise threshold based channel estimation for OFDM systems. Sādhanā 2015, 40, 2111–2128. [Google Scholar]
- Samah, A.; Alrababah, A.; Alfandi, O. A survey on OFDM channel estimation techniques based on denoising strategies. Eng. Sci. Technol. Int. J. 2020, 23, 897–909. [Google Scholar]
- Xie, H.; Andrieux, G.; Wang, Y.; Diouris, J.F.; Feng, S. Threshold based most significant taps detection for sparse channel estimation in OFDM system. In Proceedings of the 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), Kunming, China, 5–8 August 2013; pp. 1–5. [Google Scholar]
- Chu, D. Polyphase codes with good periodic correlation properties (Corresp.). IEEE Trans. Inf. Theory 1972, 18, 531–532. [Google Scholar]
- Colieri, S.; Ergen, M.; Puri, A.; Bahai, A. A study of channel estimation in OFDM systems. In Proceedings of the IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 24–28 September 2002; pp. 894–898. [Google Scholar]
- Wei, C.; Liu, H.; Zhang, Z.; Dang, J.; Wu, L. Near-Optimum Sparse Channel Estimation Based on Least Squares and Approximate Message Passing. IEEE Wireless Commun. Lett. 2017, 6, 754–757. [Google Scholar] [CrossRef]
- Van de Beek, J.; Edfors, O.; Sandell, M.; Wilson, S.K.; Borjesson, P.O. On channel estimation in OFDM systems. In Proceedings of the 1995 IEEE 45th Vehicular Technology Conference, Chicago, IL, USA, 25–28 July 1995; pp. 815–819. [Google Scholar]
- Edfors, O.; Sandell, M.; van de Beek, J.; Wilson, S.K.; Borjesson P., O. OFDM channel estimation by singular value decomposition. IEEE Trans. Commun. 1996, 46, 931–939. [Google Scholar] [CrossRef]
- Savaux, V.; Louët, Y. LMMSE channel estimation in OFDM context: A review. IET Signal Process. 2017, 11, 123–134. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Machine Learning Basics. In Deep Learning (Adaptive Computation and Machine Learning Series); The MIT Press: Cambridge, MA, USA, 2017; pp. 107–110. [Google Scholar]
- Bishop, C. Linear Models for Regression. In Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; pp. 137–146. [Google Scholar]
- Trefethen, N.; Bau, D., III. Linear Systems. In Numerical Linear Algebra, 1st ed.; SIAM: Philadelphia, PA, USA, 1997; pp. 82–84. [Google Scholar]
- 3GPP TR 38.901. Study on Channel Model for Frequencies from 0.5 to 100 GHz. Available online: https://www.3gpp.org/ftp/Specs/archive/38_series/38.901/38901-h10.zip (accessed on 24 March 2024).
CIR Refinement Scheme | Related Paper (s) | Contents |
---|---|---|
Maximum delay spread | [16,17] | · Curve fitting utilizing tap components within maximum delay spread |
· Maximum likelihood estimation with maximum delay spread based linear regression model | ||
MTCR | [18,24] | · CFR curve fitting with refined CIR using a threshold based on the largest power CIR element |
· Modeling error caused by threshold based on limited data | ||
STCR | [19,20] | · Sub-optimal threshold CIR sample selection for MSE minimization in sparse channels |
NTCR | [21] | · Noise-standard-deviation-based thresholding for robust sparse channel estimation |
WTCR | [22,23] | · A flexible weighted-noise thresholding approach designed for robust CIR refinement |
ATCR | Our work | · Thresholding for linear regression model in multipath environments using multiple CIR taps |
· Mitigated modeling error on multipath channel |
Tap Length | SNR[dB] | ||||
---|---|---|---|---|---|
−10 | 0 | 10 | 20 | 30 | |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 2 | 2 | 3 |
3 | 1 | 2 | 2 | 3 | 4 |
4 | 1 | 2 | 3 | 3 | 4 |
5 | 0 | 2 | 3 | 4 | 5 |
6 | 0 | 2 | 3 | 4 | 5 |
7 | 0 | 2 | 3 | 4 | 5 |
8 | 1 | 2 | 4 | 5 | 6 |
9 | 0 | 2 | 4 | 5 | 6 |
10 | 0 | 2 | 4 | 5 | 6 |
11 | 0 | 3 | 4 | 5 | 7 |
12 | 0 | 3 | 4 | 6 | 7 |
13 | 0 | 3 | 5 | 6 | 7 |
14 | 0 | 3 | 5 | 6 | 7 |
15 | 0 | 3 | 5 | 6 | 8 |
16 | 0 | 3 | 5 | 7 | 8 |
17 | 1 | 3 | 5 | 7 | 8 |
18 | 1 | 3 | 5 | 7 | 8 |
19 | 0 | 3 | 6 | 7 | 9 |
20 | 0 | 4 | 6 | 7 | 9 |
Scheme | The Number of Multiplication | The Number of Addition | Computational Complexity |
---|---|---|---|
PRCE | |||
DRCE | |||
LS | 0 | ||
LMMSE |
Parameters | Values |
---|---|
Number of transmission combs () | 2 |
Number of pilot sequences () | 384 |
Bandwidth configuration (, ) | |
SRS frequency hopping index () | 0 |
SRS seqeunce identity | 0 |
SRS OFDMA symbol length | 1 |
Cyclic shift offset () | 0 |
Frequency domain starting position () | 0 |
Amplitude scaling factor () | 1 |
Number of Antenna port () | 1 |
Subcarrier size () | 792 |
FFT size () | 2048 |
Maximum delay spread () | 20 |
Tap Length | SNR | Practical Linear Regression Scheme | |||
---|---|---|---|---|---|
PRCE | DRCE | ||||
MTCR | ATCR | MTCR | ATCR | ||
1 | |||||
0 | |||||
10 | |||||
20 | |||||
30 | |||||
4 | |||||
0 | |||||
10 | |||||
20 | |||||
30 |
Tap Length | 1 | 4 |
---|---|---|
LS | ||
Ideal DRCE | ||
Ideal PRCE | ||
DRCE with MTCR | ||
DRCE with WTCR | ||
DRCE with ATCR | ||
PRCE with MTCR | ||
PRCE with WTCR | ||
PRCE with ATCR | ||
Ideal LMMSE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-S.; Hwang, J.-Y.; Choi, S.-W. On the Design of Effective New Radio Sounding Reference Signal-Based Channel Estimation: Linear Regression with Channel Impulse Response Refinement. Electronics 2025, 14, 1374. https://doi.org/10.3390/electronics14071374
Choi Y-S, Hwang J-Y, Choi S-W. On the Design of Effective New Radio Sounding Reference Signal-Based Channel Estimation: Linear Regression with Channel Impulse Response Refinement. Electronics. 2025; 14(7):1374. https://doi.org/10.3390/electronics14071374
Chicago/Turabian StyleChoi, Yoon-Seok, Ji-Young Hwang, and Sang-Won Choi. 2025. "On the Design of Effective New Radio Sounding Reference Signal-Based Channel Estimation: Linear Regression with Channel Impulse Response Refinement" Electronics 14, no. 7: 1374. https://doi.org/10.3390/electronics14071374
APA StyleChoi, Y.-S., Hwang, J.-Y., & Choi, S.-W. (2025). On the Design of Effective New Radio Sounding Reference Signal-Based Channel Estimation: Linear Regression with Channel Impulse Response Refinement. Electronics, 14(7), 1374. https://doi.org/10.3390/electronics14071374