xIIRS: Industrial Internet Intrusion Response Based on Explainable Deep Learning
Abstract
:1. Introduction
1.1. Research Background
1.2. Contribution and Organization
- We improved an explanation method by approximating and sampling the historical input and calculating the sparse group lasso dynamic weighting according to the between and within feature groups importance-evaluation criteria, which improves the ability of sparse group lasso to capture key features and implements fine-grained explanation. When calculating the weights between feature groups, the symmetric uncertainty was calculated to determine the contribution of different feature groups to the classification, and the importance weights of different features within a feature group were calculated by considering the group-affiliation trustworthiness and comprehensive evaluation criteria.
- We proposed an industrial internet intrusion defense rule generation method that determines the defense rule scope based on explanation results and generates fine-grained defense rules combined with security constraints to effectively respond to industrial internet intrusions.
2. Related Work
2.1. Explanation Methods
2.2. Active Intrusion Responses
3. System Design
3.1. Explaining Industrial Intrusion Detection Results
3.1.1. Approximating History Inputs and Sampling
3.1.2. Capturing Feature Dependencies
3.2. Generating Industrial Intrusion Defense Rules
3.2.1. Defense Rule Scope
3.2.2. Security Constraints
3.2.3. Generating Unified Defense Rules
4. Experimental Evaluation
4.1. Experiment Settings
4.1.1. Dataset Description
4.1.2. Evaluation Metrics
- 1.
- ADA: We use the evaluation metric below to evaluate the fidelity of the explanation methods.
- 2.
- MAZ: We use the evaluation metric below to evaluate the sparsity of the explanation methods.
- 3.
- Anomaly: We use the evaluation metric below to evaluate the completeness of the explanation methods, measuring the completeness of the historical inputs by calculating the percentage of anomaly samples able to generate non-degenerate explanations.
- 4.
- Stability: We use the evaluation metric below to evaluate the stability of the explanation methods. To check the stability of the explanation, we calculated the size of the first K feature intersections of the explanation results concerning the same inputs from different tests.
4.1.3. Target System Performance
4.2. Explanation Methods Evaluation Experiments
4.2.1. Fidelity Evaluation Experiment
4.2.2. Sparsity Evaluation Experiment
4.2.3. Completeness Evaluation Experiment
4.2.4. Stability Evaluation Experiment
4.3. Industrial Intrusion Response Evaluation Experiment
4.3.1. Response Latency Evaluation Experiment
4.3.2. Response Effectiveness Evaluation Experiment
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kikissagbe, B.R.; Adda, M. Machine Learning-Based Intrusion Detection Methods in IoT Systems: A Comprehensive Review. Electronics 2024, 13, 3601. [Google Scholar] [CrossRef]
- Zainudin, A.; Akter, R.; Kim, D.S.; Lee, J.M. Federated learning inspired low-complexity intrusion detection and classification technique for sdn-based industrial cps. IEEE Trans. Netw. Serv. Manag. 2023, 20, 2442–2459. [Google Scholar] [CrossRef]
- Lopes, I.O.; Zou, D.; Abdulqadder, I.H.; Akbar, S.; Li, Z.; Ruambo, F.; Pereira, W. Network intrusion detection based on the temporal convolutional model. Comput. Secur. 2023, 135, 103465. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Chang, V.; Hawash, H.; Chakrabortty, R.K.; Ryan, M. Deep-IFS: Intrusion detection approach for industrial internet of things traffic in fog environment. IEEE Trans. Ind. Inform. 2020, 17, 7704–7715. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; Shimizu, S.; Ma, J.; Jin, Q. Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Trans. Ind. Inform. 2020, 17, 5790–5798. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, S.; Wang, J.; Xiong, N.N. Anomaly detection based on convolutional recurrent autoencoder for IoT time series. IEEE Trans. Syst. Man Cybern. Syst. 2020, 52, 112–122. [Google Scholar] [CrossRef]
- Javeed, D.; Gao, T.; Kumar, P.; Jolfaei, A. An explainable and resilient intrusion detection system for industry 5.0. IEEE Trans. Consum. Electron. 2023, 70, 1342–1350. [Google Scholar] [CrossRef]
- Keshk, M.; Koroniotis, N.; Pham, N.; Moustafa, N.; Turnbull, B.; Zomaya, A.Y. An explainable deep learning-enabled intrusion detection framework in IoT networks. Inf. Sci. 2023, 639, 119000. [Google Scholar] [CrossRef]
- Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Omer, R.; Patel, P.; Qian, B.; Wen, Z.; Shah, T.; Morgan, G.; et al. Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Comput. Surv. 2023, 55, 1–33. [Google Scholar] [CrossRef]
- Patil, S.; Varadarajan, V.; Mazhar, S.M.; Sahibzada, A.; Ahmed, N.; Sinha, O.; Kumar, S.; Shaw, K.; Kotecha, K. Explainable artificial intelligence for intrusion detection system. Electronics 2022, 11, 3079. [Google Scholar] [CrossRef]
- Moustafa, N.; Koroniotis, N.; Keshk, M.; Zomaya, A.Y.; Tari, Z. Explainable intrusion detection for cyber defences in the internet of things: Opportunities and solutions. IEEE Commun. Surv. Tutor. 2023, 25, 1775–1807. [Google Scholar] [CrossRef]
- Shoukat, S.; Gao, T.; Javeed, D.; Saeed, M.S.; Adil, M. Trust my IDS: An explainable AI integrated deep learning-based transparent threat detection system for industrial networks. Comput. Secur. 2025, 149, 104191. [Google Scholar] [CrossRef]
- Kummerow, A.; Abrha, E.; Eisenbach, M.; Rösch, D. Unsupervised Anomaly Detection and Explanation in Network Traffic with Transformers. Electronics 2024, 13, 4570. [Google Scholar] [CrossRef]
- Breve, B.; Cimino, G.; Deufemia, V. Hybrid Prompt Learning for Generating Justifications of Security Risks in Automation Rules. ACM Trans. Intell. Syst. Technol. 2024, 15, 1–26. [Google Scholar] [CrossRef]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3319–3328. Available online: https://proceedings.mlr.press/v70/sundararajan17a.html (accessed on 1 August 2017).
- Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.R.; Samek, W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 2015, 10, e0130140. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. Available online: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html (accessed on 1 December 2017).
- Guo, W.; Mu, D.; Xu, J.; Su, P.; Wang, G.; Xing, X. Lemna: Explaining deep learning based security applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 364–379. [Google Scholar] [CrossRef]
- Wei, F.; Li, H.; Zhao, Z.; Hu, H. {xNIDS}: Explaining Deep Learning-based Network Intrusion Detection Systems for Active Intrusion Responses. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9–11 August 2023; pp. 4337–4354. Available online: https://www.usenix.org/conference/usenixsecurity23/presentation/wei-feng (accessed on 1 August 2023).
- Song, X.; Liang, K.; Li, J. WGRLR: A weighted group regularized logistic regression for cancer diagnosis and gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Bodria, F.; Giannotti, F.; Guidotti, R.; Naretto, F.; Pedreschi, D.; Rinzivillo, S. Benchmarking and survey of explanation methods for black box models. Data Min. Knowl. Discov. 2023, 37, 1719–1778. [Google Scholar] [CrossRef]
- Bashendy, M.; Tantawy, A.; Erradi, A. Intrusion response systems for cyber-physical systems: A comprehensive survey. Comput. Secur. 2023, 124, 102984. [Google Scholar] [CrossRef]
- Paxson, V. Bro: A system for detecting network intruders in real-time. Comput. Netw. 1999, 31, 2435–2463. [Google Scholar] [CrossRef]
- Snort. 2020. Available online: https://www.snort.org/ (accessed on 19 January 2025).
- Amann, J.; Sommer, R. Providing dynamic control to passive network security monitoring. In Proceedings of the International Symposium on Recent Advances in Intrusion Detection, Kyoto, Japan, 2–4 November 2015; Springer: Cham, Switzerland, 2015; pp. 133–152. [Google Scholar] [CrossRef]
- McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [Google Scholar] [CrossRef]
- Xing, T.; Huang, D.; Xu, L.; Chung, C.J.; Khatkar, P. Snortflow: A openflow-based intrusion prevention system in cloud environment. In Proceedings of the 2013 Second GENI Research and Educational Experiment Workshop, Salt Lake City, UT, USA, 20–22 March 2013; IEEE: New York, NY, USA, 2013; pp. 89–92. [Google Scholar] [CrossRef]
- Zhang, M.; Li, G.; Wang, S.; Liu, C.; Chen, A.; Hu, H.; Gu, G.; Li, Q.; Xu, M.; Wu, J. Poseidon: Mitigating volumetric ddos attacks with programmable switches. In Proceedings of the the 27th Network and Distributed System Security Symposium (NDSS 2020), San Diego, CA, USA, 23–26 February 2020. [Google Scholar] [CrossRef]
- Rafique, M.Z.; Caballero, J. Firma: Malware clustering and network signature generation with mixed network behaviors. In Proceedings of the Research in Attacks, Intrusions, and Defenses: 16th International Symposium, RAID 2013, Rodney Bay, St. Lucia, 23–25 October 2013; Proceedings 16. Springer: Berlin/Heidelberg, Germany, 2013; pp. 144–163. [Google Scholar] [CrossRef]
- Efraimidis, P.S.; Spirakis, P.G. Weighted random sampling with a reservoir. Inf. Process. Lett. 2006, 97, 181–185. [Google Scholar] [CrossRef]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. A sparse-group lasso. J. Comput. Graph. Stat. 2013, 22, 231–245. [Google Scholar] [CrossRef]
- Mendez-Civieta, A.; Aguilera-Morillo, M.C.; Lillo, R.E. Adaptive sparse group LASSO in quantile regression. Adv. Data Anal. Classif. 2021, 15, 547–573. [Google Scholar] [CrossRef]
- Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access 2020, 8, 165130–165150. [Google Scholar] [CrossRef]
- Morris, T.; Gao, W. Industrial control system traffic data sets for intrusion detection research. In Proceedings of the Critical Infrastructure Protection VIII: 8th IFIP WG 11.10 International Conference, ICCIP 2014, Arlington, VA, USA, 17–19 March 2014; Revised Selected Papers 8. Springer: Berlin/Heidelberg, Germany, 2014; pp. 65–78. [Google Scholar] [CrossRef]
Field | Description |
---|---|
IP_pool | The IPs involved in inputs |
IP_n | The largest number of packets from the same IP |
MAC_n | The largest number of packets from the same MAC |
Port_n | The largest number of packets from the same Port |
Protocol_n | The largest number of packets from the same Protocol |
Dataset | System | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|---|
TON_IoT | AE-IDS | 92.15 | 94.11 | 96.57 | 95.32 |
LSTM-IDS | 98.43 | 98.87 | 99.24 | 99.05 | |
Gas Pipeline | AE-IDS | 95.86 | 96.09 | 92.40 | 94.21 |
LSTM-IDS | 98.05 | 96.70 | 98.00 | 97.34 |
Dataset | System | LIME | SHAP | LEMNA | IG | LRP | xNIDS | xIIRS |
---|---|---|---|---|---|---|---|---|
TON_IoT | AE-IDS | 0.399 | 0.410 | 0.433 | 0.420 | 0.376 | 0.338 | 0.320 |
LSTM-IDS | 0.348 | 0.334 | 0.324 | 0.336 | 0.319 | 0.302 | 0.290 | |
Gas Pipeline | AE-IDS | 0.494 | 0.501 | 0.517 | 0.509 | 0.462 | 0.449 | 0.431 |
LSTM-IDS | 0.358 | 0.337 | 0.328 | 0.344 | 0.314 | 0.305 | 0.293 |
Dataset | System | Setting to Zero | Replacement |
---|---|---|---|
TON_IoT | AE-IDS | 0.070 | 0.207 |
LSTM-IDS | 0.075 | 0.242 | |
Gas Pipeline | AE-IDS | 0.062 | 0.194 |
LSTM-IDS | 0.064 | 0.218 |
Dataset | System | LIME | SHAP | LEMNA | IG | LRP | xNIDS | xIIRS |
---|---|---|---|---|---|---|---|---|
TON_IoT | AE-IDS | 0.616 | 0.599 | 0.571 | 0.577 | 0.591 | 0.673 | 0.699 |
LSTM-IDS | 0.636 | 0.620 | 0.605 | 0.612 | 0.669 | 0.702 | 0.714 | |
Gas Pipeline | AE-IDS | 0.618 | 0.609 | 0.588 | 0.595 | 0.603 | 0.684 | 0.709 |
LSTM-IDS | 0.674 | 0.665 | 0.643 | 0.657 | 0.684 | 0.710 | 0.720 |
Dataset | System | LIME | SHAP | LEMNA | IG | LRP | xNIDS | xIIRS |
---|---|---|---|---|---|---|---|---|
TON_IoT | AE-IDS | 0.538 | 0.525 | 0.645 | 0.638 | 0.603 | 0.932 | 0.941 |
LSTM-IDS | 0.606 | 0.564 | 0.742 | 0.737 | 0.682 | 0.965 | 0.969 | |
Gas Pipeline | AE-IDS | 0.583 | 0.569 | 0.671 | 0.653 | 0.621 | 0.947 | 0.956 |
LSTM-IDS | 0.625 | 0.587 | 0.786 | 0.766 | 0.735 | 0.972 | 0.976 |
Dataset | System | LIME | SHAP | LEMNA | xNIDS | xIIRS |
---|---|---|---|---|---|---|
TON_IoT | AE-IDS | 0.487 | 0.562 | 0.418 | 0.734 | 0.826 |
LSTM-IDS | 0.581 | 0.688 | 0.513 | 0.805 | 0.893 | |
Gas Pipeline | AE-IDS | 0.523 | 0.617 | 0.473 | 0.785 | 0.867 |
LSTM-IDS | 0.611 | 0.723 | 0.547 | 0.837 | 0.916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Q.; Zhang, Z.; Fan, K.; Wang, M. xIIRS: Industrial Internet Intrusion Response Based on Explainable Deep Learning. Electronics 2025, 14, 987. https://doi.org/10.3390/electronics14050987
Xue Q, Zhang Z, Fan K, Wang M. xIIRS: Industrial Internet Intrusion Response Based on Explainable Deep Learning. Electronics. 2025; 14(5):987. https://doi.org/10.3390/electronics14050987
Chicago/Turabian StyleXue, Qinhai, Zhiyong Zhang, Kefeng Fan, and Mingyan Wang. 2025. "xIIRS: Industrial Internet Intrusion Response Based on Explainable Deep Learning" Electronics 14, no. 5: 987. https://doi.org/10.3390/electronics14050987
APA StyleXue, Q., Zhang, Z., Fan, K., & Wang, M. (2025). xIIRS: Industrial Internet Intrusion Response Based on Explainable Deep Learning. Electronics, 14(5), 987. https://doi.org/10.3390/electronics14050987