Dual-Band Dual-Mode Antenna Without Extra Feeding Network Based on Characteristic Mode Analysis for Vehicular Applications
Abstract
1. Introduction

2. Antenna Design
2.1. The Design of the Proposed Antenna

2.2. CMA of Proposed Antenna

2.3. The Feeding Design of the Proposed Antenna

3. Fabrication and Measurement


4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CMA | characteristic mode analysis |
| MS | modal significance |
| CST | Computer Simulation Technology |
References
- Liu, J.; Weng, Z.; Zhang, Z.-Q.; Qiu, Y.; Zhang, Y.-X.; Jiao, Y.-C. A Wideband Pattern Diversity Antenna with a Low Profile Based on Metasurface. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 303–307. [Google Scholar] [CrossRef]
- Alsath, M.G.N.; Lawrance, L.; Kanagasabai, M.; Rajendran, D.B.; Moorthy, B.; George, J.V. Quad-Band Diversity Antenna for Automotive Environment. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 875–878. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Garg, R.; Bhattacharyya, T.K. Design of a PIFA-Driven Compact Yagi-Type Pattern Diversity Antenna for Handheld Devices. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 255–258. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Garg, R.; Bhattacharyya, T.K. A Compact Yagi-Uda Type Pattern Diversity Antenna Driven by CPW-Fed Pseudomonopole. IEEE Trans. Antennas Propag. 2016, 64, 25–32. [Google Scholar] [CrossRef]
- Dong, Y.; Choi, J.; Itoh, T. Vivaldi Antenna with Pattern Diversity for 0.7 to 2.7 GHz Cellular Band Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 247–250. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, C. High-Isolated MIMO Antenna Design Based on Pattern Diversity for 5G Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 467–471. [Google Scholar] [CrossRef]
- Cui, L.; Wu, W.; Fang, D. Wideband Circular Patch Antenna for Pattern Diversity Application. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1298–1301. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.; Sun, B.; Tang, W.; Yuan, J. A Single Patch Antenna with Broadside and Conical Radiation Patterns for 3G/4G Pattern Diversity. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 433–436. [Google Scholar] [CrossRef]
- Yang, N.; Leung, K.W. Compact Cylindrical Pattern-Diversity Dielectric Resonator Antenna. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 19–23. [Google Scholar] [CrossRef]
- Wang, Z.; Ning, Y.; Dong, Y. Compact Shared Aperture Quasi-Yagi Antenna with Pattern Diversity for 5G-NR Applications. IEEE Trans. Antennas Propag. 2020, 69, 4178–4183. [Google Scholar] [CrossRef]
- Lu, P.; Yang, X. Pattern Reconfigurable Rectenna with Omni-Directional/Directional Radiation Modes for MPT With Multiple Transmitting Antennas. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 826–829. [Google Scholar] [CrossRef]
- Zheng, Y.; Yan, S. A Low-Profile Half-Mode Annular Microstrip Antenna with Pattern Diversity. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1739–1743. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Yang, Y.; Matekovits, L.; Esselle, K.P. Dual-Band Dual-Mode Textile Antenna on PDMS Substrate for Body-Centric Communications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 677–680. [Google Scholar] [CrossRef]
- Lin, S.; Huang, K. A compact microstrip antenna for GPS and DCS application. IEEE Trans. Antennas Propag. 2005, 53, 1227–1229. [Google Scholar] [CrossRef]
- Ge, L.; Gao, S.; Li, Y.; Qin, W.; Wang, J. A Low-Profile Dual-Band Antenna with Different Polarization and Radiation Properties Over Two Bands for Vehicular Communications. IEEE Trans. Veh. Technol. 2019, 68, 1004–1008. [Google Scholar] [CrossRef]
- Mao, C.; Werner, D.H.; Zhang, Y.; Zhang, X. Compact Dual-Band Dual-Mode Antenna with Omni-/Unidirectional Radiation Characteristics. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2657–2660. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, L.; Liu, N. Design Approach for Compact Dual-Band Dual-Mode Patch Antenna with Flexible Frequency Ratio. IEEE Trans. Antennas Propag. 2020, 68, 6401–6406. [Google Scholar] [CrossRef]
- Chang, L.; Li, Y.; Zhang, Z.; Feng, Z. Horizontally Polarized Omnidirectional Antenna Array Using Cascaded Cavities. IEEE Trans. Antennas Propag. 2016, 64, 5454–5459. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Li, Y.; Feng, Z. Wideband Triangular-Cavity-Cascaded Antennas. IEEE Trans. Antennas Propag. 2016, 64, 2840–2847. [Google Scholar] [CrossRef]
- Vogel, M.; Gampala, G.; Ludick, D.; Jakobus, U.; Reddy, C.J. Characteristic Mode Analysis: Putting Physics back into Simulation. IEEE Antennas Propag. Mag. 2015, 57, 307–317. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Yang, S. Application of Characteristic Mode Theory in HF Band Aircraft- Integrated Multiantenna System Designs. IEEE Trans. Antennas Propag. 2019, 67, 513–521. [Google Scholar] [CrossRef]
- Harrington, R.; Mautz, J. Theory of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag. 1971, 19, 622–628. [Google Scholar] [CrossRef]
- Naik, G.; Choudhury, B.; Park, J. IEEE 802.11bd 5G NR V2X: Evolution of radio access technologies for V2X communications. IEEE Access 2019, 7, 70169–70184. [Google Scholar] [CrossRef]
| Ref. | Band (GHz) | FBW (%) LF/HF | Peak Gain (dBi) LF/HF | Structural Complexity | Fabrication Cost |
|---|---|---|---|---|---|
| [13] | 2.45/5.8 | 3.43%/4.26% | 4.16/4.34 | Medium | Low |
| [15] | ~2.5/~3.9 | 9.2%/22.1% | 9.8/~8.1 | High | Medium |
| [16] | 2.45/5.8 | ~8.2%/~10.3% | ~2/~11 | Medium | Medium |
| This Work | 3.0/5.0 | 23.0%/7.4% | 5.18/9.10 | Medium | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Q.; Wang, C.; Zhang, H.; Su, J.; Zhao, Z. Dual-Band Dual-Mode Antenna Without Extra Feeding Network Based on Characteristic Mode Analysis for Vehicular Applications. Electronics 2025, 14, 4927. https://doi.org/10.3390/electronics14244927
Du Q, Wang C, Zhang H, Su J, Zhao Z. Dual-Band Dual-Mode Antenna Without Extra Feeding Network Based on Characteristic Mode Analysis for Vehicular Applications. Electronics. 2025; 14(24):4927. https://doi.org/10.3390/electronics14244927
Chicago/Turabian StyleDu, Qi, Chensi Wang, Hui Zhang, Jianxun Su, and Zhentao Zhao. 2025. "Dual-Band Dual-Mode Antenna Without Extra Feeding Network Based on Characteristic Mode Analysis for Vehicular Applications" Electronics 14, no. 24: 4927. https://doi.org/10.3390/electronics14244927
APA StyleDu, Q., Wang, C., Zhang, H., Su, J., & Zhao, Z. (2025). Dual-Band Dual-Mode Antenna Without Extra Feeding Network Based on Characteristic Mode Analysis for Vehicular Applications. Electronics, 14(24), 4927. https://doi.org/10.3390/electronics14244927

