A Mobile Robot Designed to Detect Hazardous and Explosive Materials in Airport Parking Lots
Abstract
1. Introduction
2. Threat Detection System
2.1. Description of System Components and Structure
2.2. Incident Probability
2.3. Hazardous and Explosive Materials
- H1–H2: acutely toxic substances;
- H3: substances with toxic effects on target organs—single exposure;
- P1a: explosive materials;
- P2: flammable gases;
- P4: oxidizing gases;
- P5a, P5b, and P5c: flammable liquids;
- P6a, P6b: self-reactive substances and organic peroxides;
- P7: pyrophoric solids and liquids;
- P8: oxidizing solids and liquids;
- E1, E2: hazardous to the aquatic environment;
- O1: substances or mixtures with hazard statement EUH014;
- O2: substances and mixtures that release flammable gases upon contact with water;
- O3: substances or mixtures with EUH029 hazard statement.
3. Threat Detection Methods Used in the Designed System
3.1. Chemical Technique
3.2. Vision Technique
3.3. Notes on Environmental Robots
3.4. Mixed Detection
4. Robot Sensors
5. Research Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MGRs | Mobile Ground Robots |
| IEDs | Improvised Explosive Devices |
| GPRs | Ground Penetration Radars |
| UVIS | Under Vehicle Inspection System |
| OCAC | Obstacle-Circumventing Adaptive Control |
| HAZBOT | Materials Emergency Response Mobile Robot |
| MUGV | Multifunctional Unmanned Ground Vehicles |
| ANPR | Automated Number Plate Recognition |
| CEPIK | Poland’s Central Vehicle and Driver Registry |
| ABW | Poland’s Internal Security Agency |
| IMS | Ion Mobility Spectrometry |
References
- Flann, N.; Moore, K.L.; Ma, L. A small mobile robot for security and inspection operations. Control Eng. Pract. 2002, 10, 1265–1274. [Google Scholar] [CrossRef]
- Qian, C.; Page, D.; Koschan, A.; Abidi, M. A “Brick”-architecture-based mobile under-vehicle inspection system. Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5804, 182–190. [Google Scholar] [CrossRef]
- Qin, Y.; Twumasi, J.O.; Le, V.Q.; Ren, Y.-J.; Lai, C.P.; Yu, T. Roadside IED detection using subsurface imaging radar and rotary UAV. Proc. SPIE 2016, 9823, 347–357. [Google Scholar] [CrossRef]
- Trevelyan, J.; Hamel, W.R.; Kang, S.C. Robotics in Hazardous Applications; Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Fan, H.; Hernandez Bennetts, V.; Schaffernicht, E.; Lilienthal, A.J. Towards gas discrimination and mapping in emergency response scenarios using a mobile robot with an electronic nose. Sensors 2019, 19, 685. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Zibaei, A.; Rezaei, M. DeepHAZMAT: Hazardous Materials Sign Detection and Segmentation with Restricted Computational Resources. arXiv 2020. [Google Scholar] [CrossRef]
- Tsitsimpelis, I.; Taylor, C.J.; Lennox, B.; Joyce, M.J. A review of ground-based robotic systems for the characterization of nuclear environments. Prog. Nucl. Energy 2019, 111, 109–124. [Google Scholar] [CrossRef]
- Gomez, C.; Veras, J.C.; Vidal, R.; Casals, L.; Paradells, J. A sigfox energy consumption model. Sensors 2019, 19, 681. [Google Scholar] [CrossRef]
- Sukumar, S.R.; Page, D.; Koschan, A.; Abidi, M.A. Under Vehicle Inspection with 3D Imaging; W: Advances in image and video technology (ss. 105–116); Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, S.; Xie, Y.; Wu, H.; Zheng, S.; Li, H. Adaptive control of a four-wheeled mobile robot subject to motion uncertainties. Front. Mech. Eng. 2023, 18, 37. [Google Scholar] [CrossRef]
- Rosin, P.L.; Lai, Y.K.; Zong, Z. RGB-D Image Analysis and Processing: Trends and Challenges; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Cruz Ulloa, C.; Prieto Sánchez, G.; Barrientos, A.; Del Cerro, J. Autonomous Thermal Vision Robotic System for Victims Recognition in Search and Rescue Missions. Sensors 2021, 21, 7346. [Google Scholar] [CrossRef]
- Wilson, J.R. A Comparison of the Sensor Brick Concept as a Modular System Architecture for Intelligent Mobile Robotic Systems. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2005. Available online: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=3818&context=utk_gradthes (accessed on 24 September 2025).
- Kasprzyczak, L.; Trenczek, S.; Cader, M. Robot for monitoring hazardous environments as a mechatronic product. J. Autom. Mob. Robot. Intell. Syst. 2012, 6, 57–64. [Google Scholar]
- Schwaiger, S.; Muster, L.; Novotny, G.; Schebek, M.; Wöber, W.; Thalhammer, S.; Böhm, C. UGV-CBRN: An unmanned ground vehicle for chemical, biological, radiological, and nuclear disaster response. arXiv 2024, arXiv:2406.14385. [Google Scholar]
- DHS. Multifunctional Unmanned Ground Vehicles for Emergency Responders. PNNL. [Report]. 2025. Available online: https://www.dhs.gov/sites/default/files/2025-05/25_0520_st_mugvmsr.pdf (accessed on 24 September 2025).
- National Fire Protection Association. NFPA 1072: Standard for Hazardous Materials/Weapons of Mass Destruction Emergency Response Personnel Professional Qualifications, 2017th ed.; National Fire Protection Association: Quincy, MA, USA, 2017; Available online: https://www.nfpa.org (accessed on 24 September 2025).
- U.S. Department of Transportation. Emergency Response Guidebook (ERG 2024); U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration: Washington, DC, USA, 2024. Available online: https://www.phmsa.dot.gov/training/hazmat/erg/emergency-response-guidebook-erg (accessed on 24 September 2025).
- Available online: https://secuzoan.com/uvbot/1195.html (accessed on 24 September 2025).
- Shvetsov, A.; Shvetsova, S.; Kozyrev, V.A.; Spharov, V.A.; Sheremet, N.M. The Car Bomb as a Terrorist Tool at Metro Stations, Railway Terminals, and Airports; Crime Science; Springer: Berlin/Heidelberg, Germany, 2016; Available online: https://link.springer.com/content/pdf/10.1007/s12198-016-0177-y.pdf (accessed on 24 September 2025).
- Chakraborty, A. Real time face detection and recognition system using Haar cascade classifier and neural networks. Inf. Technol. Ind. 2021, 9, 224–231. [Google Scholar] [CrossRef]
- Rahmad, C.; Andrie, R.; Putra, D.; Dharma, I.; Darmono, H.; Muhiqqin, I. Comparison of Viola-Jones Haar Cascade classifier and histogram of oriented gradients (HOG) for face detection. IOP Conf. Ser. Mater. Sci. Eng. 2020, 732, 012038. [Google Scholar] [CrossRef]
- Xiong, J.; Wu, J.; Tang, M.; Xiong, P.; Huang, Y.; Guo, H. Combining YOLO and background subtraction for small dynamic target detection. Vis. Comput. 2025, 41, 481–490. [Google Scholar] [CrossRef]
- Gorzym, M.; Markuszewski, D. Laboratory tests of rolling resistance of different tread profiles for the wheel of Martian rover. Adv. Sci. Technol. Res. J. 2024, 18, 280–295. [Google Scholar] [CrossRef]
- Lewis, I.R.; Daniel, N.W.; Chaffin, N.C.; Griffiths, P.R.; Tungol, M.W. Raman spectroscopic studies of explosive materials: Towards a fieldable explosives detector. Spectrochim. Part A Mol. Biomol. Spectrosc. 1995, 51, 1985–2000. [Google Scholar] [CrossRef]
- Armenta, S.; Alcalá, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef]
- Kuehn, M.; Bates, K.; Davidson, J.T.; Monjardez, G. Evaluation of handheld Raman spectrometers for the detection of intact explosives. Forensic Sci. Int. 2023, 353, 111875. [Google Scholar] [CrossRef]
- Winsen Sensor. Available online: https://www.winsen-sensor.com (accessed on 24 September 2025).
- Yuan, Y.; Wei, Y.; Zhou, X.; Guo, Y.; Chen, J.; Jiang, T. YOLO-SBA: A multi-scale and complex background aware framework for remote sensing target detection. Remote Sens. 2025, 17, 1989. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, H.G.; Suhr, J.K. BGI-YOLO: Background image-assisted object detection for stationary cameras. Electronics 2025, 14, 60. [Google Scholar] [CrossRef]
- Wanis, M.; Shaheen, E.; Samir, M. The impact of different jamming techniques on OFDM communication systems. Int. Conf. Electr. Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef]




















| Road Vehicle Type | Clearance Height h [cm] |
|---|---|
| Sporty | 12–16 |
| City cars, compact cars, and mid-size cars | 14–19 |
| Minivans, combivans | 15–18 |
| SUVs, off-road vehicles | 17–55 |
| Trucks | 25–40 |
| Buses | 17–30 |
| p1 | p2 | p3 | p4 | p5 | pENV | pDIM | pglobal |
|---|---|---|---|---|---|---|---|
| 0.0842 | 1 | 1 | 0.754 | 0.0355 | 0.002254 | 0.04 | 9.0151 × 10−5 |
| 0.0986 | 1 | 1 | 0.7 | 0.0337 | 0.002326 | 0.023 | 5.3497 × 10−5 |
| 0.172 | 1 | 1 | 0.592 | 0.0308 | 0.003136 | 0.15 | 0.000470427 |
| 0.1492 | 0.916667 | 1 | 0.532 | 0.0291 | 0.002117 | 0.01 | 2.1173 × 10−5 |
| 0.1378 | 0.75 | 1 | 0.51 | 0.0283 | 0.001492 | 0.021 | 3.1325 × 10−5 |
| 0.1506 | 0.783333 | 1 | 0.506 | 0.0282 | 0.001683 | 0.021 | 3.5350 × 10−5 |
| 0.112 | 1 | 1 | 0.738 | 0.0351 | 0.002901 | 0.028 | 8.1234 × 10−5 |
| 0.0778 | 1 | 1 | 0.85 | 0.0405 | 0.002678 | 0.031 | 8.3026 × 10−5 |
| 0.0612 | 1 | 1 | 0.834 | 0.0383 | 0.001955 | 0.011 | 2.1504 × 10−5 |
| 0.0516 | 1 | 1 | 0.86 | 0.0394 | 0.001748 | 0.019 | 3.3219 × 10−5 |
| 0.0456 | 1 | 1 | 0.79 | 0.0368 | 0.001326 | 0.001 | 1.3257 × 10−6 |
| 0.041 | 1 | 1 | 0.788 | 0.0368 | 0.001189 | 0.002 | 2.3779 × 10−6 |
| 0.0372 | 1 | 1 | 0.82 | 0.0381 | 0.001162 | 0.02 | 2.3244 × 10−5 |
| 0.0344 | 1 | 1 | 0.796 | 0.0373 | 0.001021 | 0.005 | 5.1068 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celiński, I.; Warczek, J.; Opasiak, T. A Mobile Robot Designed to Detect Hazardous and Explosive Materials in Airport Parking Lots. Electronics 2025, 14, 4866. https://doi.org/10.3390/electronics14244866
Celiński I, Warczek J, Opasiak T. A Mobile Robot Designed to Detect Hazardous and Explosive Materials in Airport Parking Lots. Electronics. 2025; 14(24):4866. https://doi.org/10.3390/electronics14244866
Chicago/Turabian StyleCeliński, Ireneusz, Jan Warczek, and Tadeusz Opasiak. 2025. "A Mobile Robot Designed to Detect Hazardous and Explosive Materials in Airport Parking Lots" Electronics 14, no. 24: 4866. https://doi.org/10.3390/electronics14244866
APA StyleCeliński, I., Warczek, J., & Opasiak, T. (2025). A Mobile Robot Designed to Detect Hazardous and Explosive Materials in Airport Parking Lots. Electronics, 14(24), 4866. https://doi.org/10.3390/electronics14244866

