Performance Analysis of Cache-Enabled Millimeter-Wave Downlink Time Division Duplexing Networks with Cooperative Base Stations
Abstract
1. Introduction
1.1. Related Work
1.2. Major Contribution
2. System Model
2.1. Network Model
2.2. Path Loss and Blockage Models
2.3. Improved Directional Beamforming Model
2.4. Channel Model
2.5. Caching Model
3. Cache Hitting Probability in Cooperated Network
3.1. Probability of Cache Hitting Distribution
3.2. Average Successful Content Files Delivery Probability in Cooperated Network
- (a)
- Obtained by applying the Chebyshev sum inequality.
- (b)
- Obtained because of the inequality , where r denotes a gamma random variable with shaping parameter a, and .
- (c)
- Derived by denoting
- (d)
- Obtained using the binomial theorem, occurring through other DL and UL transmissions from the independent BS, which are out of coordinated transmission. Moreover, the DL and UL interference terms are further divided as LOS and NLOS interfering terms:
4. Simulation Results
4.1. Simulation Setup and Reproducibility
4.2. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, M.; Caire, G. Fundamental limits of caching in wireless D2D networks. IEEE Trans. Inf. Theory 2016, 62, 849–869. [Google Scholar] [CrossRef]
- Liu, D.; Yang, C. Caching policy toward maximal success probability and area spectral efficiency of cache-enabled HetNets. IEEE Trans. Commun. 2017, 65, 2699–2714. [Google Scholar] [CrossRef]
- Gui, Y.; Lu, H.; Wu, F.; Chen, C.W. Robust video broadcast for users with heterogeneous resolution in mobile networks. IEEE Trans. Mob. Comput. 2020, 20, 3251–3266. [Google Scholar] [CrossRef]
- Poularakis, K.; Iosifidis, G.; Tassiulas, L. Approximation algorithms for mobile data caching in small cell networks. IEEE Trans. Commun. 2014, 62, 3665–3677. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Lin, Z.; Chen, W.; Vucetic, B.; Hanzo, L. Distributed caching for data dissemination in the downlink of heterogeneous networks. IEEE Trans. Commun. 2015, 63, 3553–3568. [Google Scholar] [CrossRef]
- Tao, M.; Gündüz, D.; Xu, F.; Roig, J.S.P. Content caching and delivery in wireless radio access networks. IEEE Trans. Commun. 2019, 67, 4724–4749. [Google Scholar] [CrossRef]
- MuraliKrishna, P.V.; VenkataRamana, T. Performance analysis of joint transmission in TDD-based mm-wave networks with BS heights. e-Prime Adv. Electr. Eng. Electron. Energy 2024, 10, 100759. [Google Scholar] [CrossRef]
- Chen, Z.; Pappas, N.; Kountouris, M. Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal. IEEE Commun. Lett. 2017, 21, 584–587. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, D. Analysis and optimization of caching and multicasting in large-scale cache-enabled heterogeneous wireless networks. IEEE Trans. Wirel. Commun. 2017, 16, 250–264. [Google Scholar] [CrossRef]
- Biswas, S.; Zhang, T.; Singh, K.; Vuppala, S.; Ratnarajah, T. An analysis on caching placement for millimeter–micro-wave hybrid networks. IEEE Trans. Commun. 2019, 67, 1645–1662. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Chen, Y.; Lin, Z.; Vucetic, B.; Hanzo, L. Pricing and resource allocation via game theory for a small-cell video caching system. IEEE J. Sel. Areas Commun. 2016, 34, 2115–2129. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. Joint optimization of caching and association in energy-harvesting-powered small cell networks. IEEE Trans. Veh. Technol. 2018, 67, 6469–6480. [Google Scholar] [CrossRef]
- Chae, S.H.; Choi, W. Caching placement in stochastic wireless caching helper networks: Channel selection diversity via caching. IEEE Trans. Wirel. Commun. 2016, 15, 6626–6637. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, H.; Gu, Z. Analysis and Optimization of Cache-Enabled mmWave HetNets with Integrated Access and Backhaul. IEEE Trans. Wirel. Commun. 2023, 22, 6993–7007. [Google Scholar] [CrossRef]
- Gu, Z.; Lu, H.; Zhang, M.; Sun, H.; Chen, C.W. Association and Caching in Relay-Assisted mmWave Networks: A Stochastic Geometry Perspective. IEEE Trans. Wirel. Commun. 2021, 20, 8316–8332. [Google Scholar] [CrossRef]
- Ochia, O.E.; Member, S.; Fapojuwo, A.O. Popularity and Size-Aware Caching with CoordinatedTransmission in Hybrid Microwave/Millimeter Wave Heterogeneous Networks. IEEE Trans. Commun. 2021, 69, 4599–4614. [Google Scholar] [CrossRef]
- Vuppala, S.; Vu, T.X.; Gautam, S.; Chatzinotas, S.; Ottersten, B. Cache-Aided Millimeter Wave Ad-Hoc Networks with Contention-Based Content Delivery. IEEE Trans. Commun. 2018, 66, 3540–3554. [Google Scholar] [CrossRef]
- Ye, Y.; Huang, S.; Xiao, M.; Ma, Z.; Skoglund, M. Cache-enabled millimeter wave cellular networks with clusters. IEEE Trans. Commun. 2020, 68, 7732–7745. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Zhou, L.; Cao, W. A survey on caching in mobile edge computing. Wirel. Commun. Mob. Comput. 2021, 23, 5565648. [Google Scholar] [CrossRef]
- BarghiZanjani, H.; Gouda, B.; Tölli, A. Coordinated Multi-BS SSB Beam Design for Enhanced Initial Access Coverage. arXiv 2025, arXiv:2506.02760. [Google Scholar] [CrossRef]
- Kulkarni, M.N.; Andrews, J.G.; Ghosh, A. Performance of dynamic and static TDD in self-backhauled mmwave cellular networks. IEEE Trans. Wirel. Commun. 2017, 16, 6460–6478. [Google Scholar] [CrossRef]
- Bai, T.; Heath, R.W. Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 2014, 14, 1100–1114. [Google Scholar] [CrossRef]
- Thornburg, A.; Bai, T.; Heath, R.W. Performance analysis of outdoor mmWave ad hoc networks. IEEE Trans. Signal Process. 2016, 64, 4065–4079. [Google Scholar] [CrossRef]
- Sánchez, J.D.V.; Urquiza-Aguiar, L.; Paredes, M.C.P. Fading Channel Models for mm-Wave Communications. Electronics 2021, 10, 798. [Google Scholar] [CrossRef]
- Ju, Y.; Gao, Z.; Wang, H.; Liu, L.; Pei, Q.; Dong, M.; Mumtaz, S.; Leung, V.C. Energy-efficient cooperative secure communications in mmwave vehicular networks using deep recurrent reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14460–14475. [Google Scholar] [CrossRef]
- Blaszczyszyn, B.; Giovanidis, A. Optimal geographic caching in cellular networks. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015. [Google Scholar]






| Symbol | Definition |
|---|---|
| BS’s density | |
| UE’s density | |
| PL(R) | Path loss function |
| LOS and NLoS path loss intercepts | |
| j | Number of files in cache |
| m | Nakagami coefficient |
| Major and side lobe gains | |
| Half-power beam width | |
| Average cell radius | |
| M | Cooperating BSs |
| , | Blockage parameters |
| Zipf exponent | |
| Blockage density | |
| D-TDD | Dynamic Time Division Duplexing |
| S-TDD | Static Time Division Duplexing |
| JT | Joint transmission |
| JTS | Joint transmission set |
| SBS | Single base station |
| ASP | Average Success Probability |
| PPP | Poisson Point Process |
| LoS/NLoS | Line-of-sight/non-line-of-sight |
| DTCC | Dynamic-TDD-based cooperative caching |
| Parameter | Values |
|---|---|
| Carrier frequency | 28 Ghz |
| Zipf coefficient | 0.5 and 1.5 |
| Average cell radius () | 100 m and 200 m |
| Signal transmission bandwidth | 1 GHz |
| BS transmit power () | 1 Watt |
| Cache size | 5 |
| Blockage parameters | , |
| Path loss exponents and intercepts | , , , |
| Channel model (m) | , |
| Beamforming parameters | , |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muralikrishna, P.V.; Sridevi, K.; Ramana, T.V. Performance Analysis of Cache-Enabled Millimeter-Wave Downlink Time Division Duplexing Networks with Cooperative Base Stations. Electronics 2025, 14, 4765. https://doi.org/10.3390/electronics14234765
Muralikrishna PV, Sridevi K, Ramana TV. Performance Analysis of Cache-Enabled Millimeter-Wave Downlink Time Division Duplexing Networks with Cooperative Base Stations. Electronics. 2025; 14(23):4765. https://doi.org/10.3390/electronics14234765
Chicago/Turabian StyleMuralikrishna, P. V., Kadiyam Sridevi, and T. Venkata Ramana. 2025. "Performance Analysis of Cache-Enabled Millimeter-Wave Downlink Time Division Duplexing Networks with Cooperative Base Stations" Electronics 14, no. 23: 4765. https://doi.org/10.3390/electronics14234765
APA StyleMuralikrishna, P. V., Sridevi, K., & Ramana, T. V. (2025). Performance Analysis of Cache-Enabled Millimeter-Wave Downlink Time Division Duplexing Networks with Cooperative Base Stations. Electronics, 14(23), 4765. https://doi.org/10.3390/electronics14234765
