Three-Level MIFT: A Novel Multi-Source Information Fusion Waterway Tracking Framework
Abstract
1. Introduction
2. Related Work
2.1. LiDAR-Based Vessel Tracking
2.2. Multi-Source Information Fusion
3. System Framework
3.1. Overall System Architecture
3.2. Improved Adaptive LiDAR Tracking Algorithm
3.2.1. Point Cloud Preprocessing and Detection
3.2.2. Improved Adaptive Multi-Object Tracking
- (1)
- State Estimation
- (2)
- Data Association
- (3)
- Track Management
3.3. Improved Decision Level Fusion
3.3.1. AIS Data Pre Tracking
3.3.2. Space Time Alignment
3.3.3. Multi-Source D-S Evidence Adaptive Fusion Decision Support
- (1)
- Coarse Matching Stage: preliminary screening based on geometric and motion information
- (2)
- Fine Matching Stage: decision fusion based on adaptive D-S evidence theory
3.3.4. State Fusion Based on Covariance Crossover
3.3.5. Three-Level Track Management and Beyond-Visual-Range Warning
4. Experiments and Analysis
4.1. Evaluation Metrics
- (1)
- Multi-Object Tracking Accuracy (MOTA)
- (2)
- Intersection over Union (IoU)
- (3)
- Multi-Object Tracking Precision (MOTP)
- (4)
- Identity True Positive (IDF1)
- (5)
- Root Mean Square Error (RMSE)
4.2. Experimental Setup
- (1)
- Long straight channel: multiple ships sail at a uniform speed along a single straight channel, which is used to evaluate the basic performance of the tracking module;
- (2)
- Slight occlusion: in this scene, four ships travel in the same direction and one ship travels in the opposite direction. This setting generates 4 double ship crossing events in the simulation cycle, and at most one ship is partially blocked at any time. This scenario is mainly used to investigate the robustness of basic data association of the tracking module in low-density and short-term occlusion environments;
- (3)
- Severe occlusion: this scene simulates the high-density traffic flow in opposite directions, including 7 ships, including 4 going right and 3 going left. This setting generates up to 12 double ship crossing events in the simulation cycle, and forms a dense intersection area of multiple ships with a long duration. This scenario aims to test the ID switching inhibition ability of the algorithm under high-density, long-term, multi-target complex occlusion;
- (4)
- Dynamic maneuver: among the four ships, one decelerates suddenly, one accelerates, one turns, and one sails at a constant speed, which is used to verify the adaptability of the tracking module to complex dynamics;
- (5)
- BVR early warning: four ships sail forward and backward to the right, one of which is always outside the field of vision of LiDAR, only relying on AIS tracking, and then sails into the field of vision to test the BVR early warning capability.
4.3. Experiment 1: Performance Comparison and Ablation of LiDAR Tracking Algorithm
4.3.1. Performance Comparison of LiDAR Tracking Algorithm
4.3.2. Tracking Algorithm Ablation Experiment
- (1)
- KF + IoU-only association
- (2)
- KF + hybrid cost association
- (3)
- AKF + IoU-only association
- (4)
- AKF + hybrid cost association + short-term re-association
4.4. Experiment 2: Gain Analysis of Multi-Source Fusion Module
4.5. Experiment 3: Overall System Function and over the Horizon Capability Display
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, W.; Zhu, M.; Chen, S.; Cheng, X.; Wen, Y.; Zhang, W.; Negenborn, R.R.; Pang, Y. Coordination and Optimization Control Framework for Vessels Platooning in Inland Waterborne Transportation System. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15667–15686. [Google Scholar] [CrossRef]
- Wu, Z.; Ren, C.; Wu, X.; Wang, L.; Zhu, L.; Lv, Z. Research on Digital Twin Construction and Safety Management Application of Inland Waterway Based on 3D Video Fusion. IEEE Access 2021, 9, 109144–109156. [Google Scholar] [CrossRef]
- Li, G.; Deng, X.; Zhou, M.; Zhu, Q.; Lan, J.; Xia, H.; Mitrouchev, P. Research on Data Monitoring System for Intelligent Ship. In Proceedings of the Advanced Manufacturing and Automation IX, 9th International Workshop of Advanced Manufacturing and Automation (IWAMA 2019), Plymouth, UK, 21–22 November 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 234–241. [Google Scholar]
- Er, M.J.; Zhang, Y.; Chen, J.; Gao, W. Ship Detection with Deep Learning: A Survey. Artif. Intell. Rev. 2023, 56, 11825–11865. [Google Scholar] [CrossRef]
- Sun, P.; Sun, C.; Wang, R.; Zhao, X. Object Detection Based on Roadside LiDAR for Cooperative Driving Automation: A Review. Sensors 2022, 22, 9236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, J.; Xu, H.; Wang, X.; Fan, X.; Chen, R. Automatic Background Construction and Object Detection Based on Roadside LiDAR. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4086–4097. [Google Scholar] [CrossRef]
- Faggioni, N.; Ponzini, F.; Martelli, M. Multi-Obstacle Detection and Tracking Algorithms for the Marine Environment Based on Unsupervised Learning. Ocean Eng. 2022, 266, 113034. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y. Ship Berthing Information Extraction System Using Three-Dimensional Light Detection and Ranging Data. J. Mar. Sci. Eng. 2021, 9, 747. [Google Scholar] [CrossRef]
- Sorial, M.; Mouawad, I.; Simetti, E.; Odone, F.; Casalino, G. Towards a Real-Time Obstacle Detection System for Unmanned Surface Vehicles. In Proceedings of the OCEANS 2019 MTS/IEEE, Seattle, WA, USA, 27–31 October 2019; pp. 1–8. [Google Scholar]
- Zhu, T.; Wang, X.; Tao, Y.; Yan, K.; Zhang, D.; Wu, L.; Zheng, J. A Ship Detection Method Based on LiDAR Data from Inland Waterways. In Proceedings of the 2024 IEEE 12th International Conference on Information, Communication and Networks (ICICN), Guilin, China, 21–24 August 2024; pp. 450–455. [Google Scholar]
- Harati-Mokhtari, A.; Wall, A.; Brooks, P.; Wang, J. Automatic Identification System (AIS): Data Reliability and Human Error Implications. J. Navigat. 2007, 60, 373–389. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple Online and Realtime Tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Sun, P.; Cao, J.; Jiang, Y.; Zhang, R.; Xie, E.; Yuan, Z.; Wang, C.; Luo, P. TransTrack: Multiple Object Tracking with Transformer. arXiv 2021, arXiv:2012.15460. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, X.; Xu, N.; Gao, N.; Ge, M. LiDAR-Based Simultaneous Multi-Object Tracking and Static Mapping in Nearshore Scenario. Ocean Eng. 2023, 272, 113939. [Google Scholar]
- Qi, L.; Huang, L.; Zhang, Y.; Chen, Y.; Wang, J.; Zhang, X. A Real-Time Vessel Detection and Tracking System Based on LiDAR. Sensors 2023, 23, 9027. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shen, Q.; Ai, D.; Wang, H.; Zhang, S.; Wang, X. Sea-IoUTracker: A More Stable and Reliable Maritime Target Tracking Scheme for Unmanned Vessel Platforms. Ocean Eng. 2024, 299, 117243. [Google Scholar] [CrossRef]
- Dalhaug, N.; Stahl, A.; Mester, R.; Brekke, E.F. Near-Shore Mapping for Detection and Tracking of Vessels. arXiv 2025, arXiv:2502.18368. [Google Scholar] [CrossRef]
- Xu, S.; Liu, C.; Bao, S.; Qian, H. Lidar-Based Obstacle Detection Algorithm and Implementation. In Proceedings of the 2025 6th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), Hefei, China, 1–3 August 2025; pp. 228–231. [Google Scholar]
- Gaglione, D.; Braca, P.; Soldi, G. Belief Propagation Based AIS/Radar Data Fusion for Multi-Target Tracking. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 2143–2150. [Google Scholar]
- Baerveldt, M.; Shuai, J.; Brekke, E.F. Improved Fusion of AIS Data for Multiple Extended Object Tracking. In Proceedings of the 2024 27th International Conference on Information Fusion (FUSION), Venice, Italy, 1–4 July 2024; pp. 1–8. [Google Scholar]
- Chavez-Garcia, R.O.; Aycard, O. Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking. IEEE Trans. Intell. Transp. Syst. 2016, 17, 525–534. [Google Scholar] [CrossRef]
- Yager, R.R. On the Relationship of Methods of Aggregating Evidence in Expert Systems. Cybern. Syst. 1985, 16, 1–21. [Google Scholar] [CrossRef]
- Haghbayan, M.-H.; Farahnakian, F.; Poikonen, J.; Laurinen, M.; Nevalainen, P.; Plosila, J.; Heikkonen, J. An Efficient Multi-Sensor Fusion Approach for Object Detection in Maritime Environments. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2163–2170. [Google Scholar]
- Lin, J.; Diekmann, P.; Framing, C.-E.; Zweigel, R.; Abel, D. Maritime Environment Perception Based on Deep Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15487–15497. [Google Scholar] [CrossRef]
- Li, Z.; Tian, X. The Application of Federated Kalman Filtering in the Information Fusion Technique. In Proceedings of the 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Harbin, China, 26–30 July 2011; pp. 1228–1230. [Google Scholar]
- Zhang, Q.; Shan, Y.; Zhang, Z.; Lin, H.; Zhang, Y.; Huang, K. Multisensor Fusion-Based Maritime Ship Object Detection Method for Autonomous Surface Vehicles. J. Field Robot. 2024, 41, 493–510. [Google Scholar] [CrossRef]
- Kuhn, H.W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Wang, T. Real-Time Tracking and Berthing Aid System with Occlusion Handling Based on LiDAR. Ocean Eng. 2023, 288, 115929. [Google Scholar] [CrossRef]
- Luo, H.; Li, H.; Chen, Y.; Su, M. A Vehicle Detection Method Based on the Decision-Level Fusion of LiDAR and Camera. In Proceedings of the 2023 8th International Conference on Image, Vision and Computing (ICIVC), Dalian, China, 7–9 July 2023; pp. 432–437. [Google Scholar]
- Wiseman, Y. Ancillary Ultrasonic Rangefinder for Autonomous Vehicles. Int. J. Secur. Its Appl. 2018, 10, 49–58. [Google Scholar] [CrossRef]
- Premnath, S.; Mukund, S.; Sivasankaran, K.; Sidaarth, R.; Adarsh, S. Design of an Autonomous Mobile Robot Based on the Sensor Data Fusion of LiDAR 360, Ultrasonic Sensor and Wheel Speed Encoder. In Proceedings of the 2019 9th International Conference on Advances in Computing and Communication (ICACC), Kochi, India, 6–8 November 2019; pp. 62–65. [Google Scholar]






| Module Name | Mean (ms) | STD (ms) |
|---|---|---|
| Point cloud clustering | 32.80 | 19.30 |
| Multi-objects Tracking | 4.19 | 5.60 |
| Total (per frame) | ≈36.99 |
| Algorithm | MOTA (%) | MOTP (%) | IDF1 (%) | FP | FN | IDSW |
|---|---|---|---|---|---|---|
| SORT | 80.52 ± 2.82 | 69.36 ± 0.47 | 73.15 ± 5.05 | 72.20 ± 18.28 | 614.00 ± 95.58 | 22.70 ± 5.23 |
| Faggioni’s algorithm | 79.02 ± 0.39 | 52.26 ± 0.19 | 71.11 ± 1.85 | 172.10 ± 6.77 | 569.20 ± 12.18 | 22.20 ± 2.35 |
| Yao’s algorithm | 85.35 ± 0.56 | 63.59 ± 0.28 | 88.18 ± 0.89 | 94.70 ± 8.54 | 433.00 ± 17.84 | 5.50 ± 1.18 |
| Qi’s algorithm | 82.14 ± 0.59 | 63.92 ± 0.27 | 74.73 ± 2.01 | 91.80 ± 10.29 | 521.30 ± 16.12 | 36.80 ± 2.94 |
| Guo’s algorithm | 80.69 ± 0.94 | 57.70 ± 0.40 | 87.32 ± 1.32 | 163.10 ± 13.92 | 598.40 ± 29.52 | 5.80 ± 0.63 |
| Dalhaug’s algorithm | 79.85 ± 1.18 | 58.28 ± 0.39 | 88.10 ± 2.50 | 131.20 ± 4.96 | 665.20 ± 50.25 | 4.10 ± 1.29 |
| Xu’s algorithm | 73.42 ± 0.47 | 55.59 ± 0.89 | 74.39 ± 1.77 | 299.50 ± 14.14 | 736.40 ± 23.02 | 20.10 ± 2.08 |
| our algorithm | 89.03 ± 0.31 | 64.06 ± 0.21 | 89.80 ± 1.88 | 98.90 ± 12.70 | 295.30 ± 13.83 | 5.10 ± 0.88 |
| Configuration | Tracking Scheme | MOTA (%) | MOTP (%) | IDF1 (%) | IDSW |
|---|---|---|---|---|---|
| (1) | KF + IoU | 85.34 ± 0.96 | 49.07 ± 0.29 | 80.00 ± 2.43 | 17.10 ± 3.25 |
| (2) | KF + Hybrid Cost | 86.80 ± 0.69 | 49.09 ± 0.09 | 80.01 ± 2.84 | 15.20 ± 3.22 |
| (3) | AKF + IoU | 88.45 ± 0.42 | 63.89 ± 0.20 | 88.59 ± 1.43 | 8.00 ± 1.76 |
| (4) | AKF + Hybrid Cost + Re-association (Ours) | 89.03 ± 0.31 | 64.04 ± 0.17 | 89.80 ± 1.88 | 5.10 ± 0.88 |
| Algorithm | MOTA (%) | MOTP (%) | IDF1 (%) | RMSE_Pos (m) | RMSE_Size (m) |
|---|---|---|---|---|---|
| our algorithm | 89.03 ± 0.31 | 64.06 ± 0.21 | 89.80 ± 1.88 | 1.93 ± 0.04 | 3.41 ± 0.05 |
| our algorithm (after fusion) | 90.33 ± 0.59 | 77.11 ± 0.40 | 90.82 ± 1.91 | 2.19 ± 0.05 | 1.97 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Qiu, C.; Wang, M.; Kan, R. Three-Level MIFT: A Novel Multi-Source Information Fusion Waterway Tracking Framework. Electronics 2025, 14, 4344. https://doi.org/10.3390/electronics14214344
Liang W, Qiu C, Wang M, Kan R. Three-Level MIFT: A Novel Multi-Source Information Fusion Waterway Tracking Framework. Electronics. 2025; 14(21):4344. https://doi.org/10.3390/electronics14214344
Chicago/Turabian StyleLiang, Wanqing, Chen Qiu, Mei Wang, and Ruixiang Kan. 2025. "Three-Level MIFT: A Novel Multi-Source Information Fusion Waterway Tracking Framework" Electronics 14, no. 21: 4344. https://doi.org/10.3390/electronics14214344
APA StyleLiang, W., Qiu, C., Wang, M., & Kan, R. (2025). Three-Level MIFT: A Novel Multi-Source Information Fusion Waterway Tracking Framework. Electronics, 14(21), 4344. https://doi.org/10.3390/electronics14214344

