Hybrid Ensemble Deep Learning Framework with Snake and EVO Optimization for Multiclass Classification of Alzheimer’s Disease Using MRI Neuroimaging
Abstract
1. Introduction
2. Related Works
2.1. Literature Review
2.2. Research Gaps
3. Proposed Method
3.1. Data Overview
3.1.1. Alzheimer’s Disease Dataset
3.1.2. MRI Dataset
3.1.3. OASIS-3 Dataset
3.1.4. Private Clinical MRI Dataset
3.2. Data Preprocessing
3.2.1. Image Resizing
3.2.2. Normalization
- I represents the original pixel intensity;
- and denote the minimum and maximum intensity values in the dataset;
- is the normalized pixel intensity.
3.2.3. Label Encoding
3.3. Modeling
3.3.1. Convolutional Neural Network (CNN)
3.3.2. MobileNet
3.3.3. Xception
3.3.4. Vision Transformer (ViT)
3.4. Ensemble Learning
| Algorithm 1 Ensemble Voting Strategy for Multi-Model Prediction Aggregation |
|
3.5. K-Fold Cross-Validation
3.6. Energy Valley Optimization (EVO)
| Algorithm 2 Energy Valley Optimization (EVO) |
|
3.7. Snake Optimization
| Algorithm 3 Snake Optimization Algorithm (SOA) |
|
3.8. Snake with Energy Valley Optimization (EVO) Hybrid Approach
| Algorithm 4 Snake + EVO Hybrid Optimization for Hyperparameter Tuning |
|
3.9. Grad-CAM
4. Model Performance Evaluation
4.1. Accuracy
- TP–true positives (correctly classified positive cases),
- TN—true negatives (correctly classified negative cases),
- FP—false positives (incorrectly classified as positive),
- FN—false negatives (missed positive cases).
4.2. Precision
4.3. Recall
4.4. F1-Score
4.5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
- TPR (Recall) = .
- FPR = .
5. Results and Discussions
5.1. Results of the Alzheimer’s Disease Dataset
5.1.1. CNN
5.1.2. MobileNet
5.1.3. Xception
5.1.4. Hard Voting Ensemble
5.1.5. Hybrid Optimization (Snake + EVO)
5.1.6. Comparison Results in the Alzheimer’s Disease Dataset
5.1.7. Grad-CAM Results
5.2. Results of the MRI Dataset
5.2.1. CNN
5.2.2. MobileNet
5.2.3. Xception
5.2.4. Hard Voting Ensemble
5.2.5. MobileNet Snake + EVO
5.2.6. Comparison
5.2.7. Grad-CAM
5.3. Evaluation on Multiple Datasets and Generalizability
5.3.1. Results on the OASIS Dataset
5.3.2. Results on the Private Hospital Dataset
5.3.3. Discussion
5.4. Comparative Evaluation with Related Works
5.4.1. Statistical Validation via Mean ± Standard Deviation Analysis
5.4.2. Statistical Significance Analysis
5.5. K-Fold Cross-Validation Results
5.6. Comparison with Recent Advances and Future Directions
5.7. Dynamic Assessment of Disease Progression
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sengoku, R. Aging and Alzheimer’s disease pathology. Neuropathology 2020, 40, 22–29. [Google Scholar] [CrossRef]
- Sehar, U.; Rawat, P.; Reddy, A.P.; Kopel, J.; Reddy, P.H. Amyloid beta in aging and Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 12924. [Google Scholar] [CrossRef]
- Saragea, P.D. Alzheimer’s Disease (AD): Environmental Modifiable Risk Factors. Int. J. Multidiscip. Res. 2024, 6, 1–12. [Google Scholar]
- Cipriani, G.; Danti, S.; Picchi, L.; Nuti, A.; Di Fiorino, M. Daily functioning and dementia. Dement. Neuropsychol. 2020, 14, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Landeiro, F.; Mughal, S.; Walsh, K.; Nye, E.; Morton, J.; Williams, H.; Ghinai, I.; Castro, Y.; Leal, J.; Roberts, N.; et al. Health-related quality of life in people with predementia Alzheimer’s disease, mild cognitive impairment or dementia measured with preference-based instruments: A systematic literature review. Alzheimer’s Res. Ther. 2020, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sidhu, J.; Lui, F.; Tsao, J.W. Alzheimer disease. In StatPearls [Internet]; StatPearls Publishing: Petersburg, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499922/ (accessed on 15 January 2025).
- Ganatra, M.; Suthar, D.; Prajapati, D.; Zala, G. Genetic Intervention and Alzheimer’s Disease: Dazzling New Dawns on Alzheimer’s Horizon. J. Alzheimer’s Dis. Res. 2024, 15, 123–130. [Google Scholar] [CrossRef]
- Health, T.L.P. Reinvigorating the public health response to dementia. Lancet Public Health 2021, 6, e696. [Google Scholar] [CrossRef]
- Vardy, T.C. How to Avoid or Control Neurological Disorders. EC Neurol. 2020, 12, 73–89. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2016, 12, 459–509. [Google Scholar] [CrossRef]
- Garry, S.; Checchi, F. Armed conflict and public health: Into the 21st century. J. Public Health 2020, 42, e287–e298. [Google Scholar] [CrossRef]
- Goldsteen, R.L.; Goldsteen, R.; Goldsteen, K.; Dwelle, T. Introduction to Public Health: Promises and Practices; Springer Publishing Company: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Meganck, R.M.; Baric, R.S. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat. Med. 2021, 27, 401–410. [Google Scholar] [CrossRef]
- Uysal, G.; Ozturk, M. Classifying early and late mild cognitive impairment stages of Alzheimer’s disease by analyzing different brain areas. In Proceedings of the 2020 Medical Technologies Congress (TIPTEKNO), Antalya, Turkey, 19–20 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, J. Mild cognitive impairment in relation to Alzheimer’s disease: An investigation of principles, classifications, ethics, and problems. Neuroethics 2023, 16, 16. [Google Scholar] [CrossRef]
- Kasula, B.Y. A machine learning approach for differential diagnosis and prognostic prediction in Alzheimer’s disease. Int. J. Sustain. Dev. Comput. Sci. 2023, 5, 1–8. [Google Scholar]
- Kale, M.B.; Wankhede, N.L.; Pawar, R.S.; Ballal, S.; Kumawat, R.; Goswami, M.; Khalid, M.; Taksande, B.G.; Upaganlawar, A.B.; Umekar, M.J.; et al. AI-driven innovations in Alzheimer’s disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Res. Rev. 2024, 101, 102497. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Assad, A.; Hussain, A.; Singh, M. Alzheimer’s disease diagnosis using deep learning techniques: Datasets, challenges, research gaps and future directions. Int. J. Syst. Assur. Eng. Manag. 2024, 1–35. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, H.; Xu, Y.; Chu, X. Research on magnetic resonance imaging in diagnosis of Alzheimer’s disease. Eur. J. Med. Res. 2024, 29, 632. [Google Scholar] [CrossRef]
- Arumugam, J.; Prasanna Venkatesan, V.; Beigh, T. MRI-Based Biomarker in the Diagnosis of Alzheimer’s Disease Using Attention-UNet. SN Comput. Sci. 2025, 6, 211. [Google Scholar] [CrossRef]
- Islam, J.; Zhang, Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 2018, 5, 2. [Google Scholar] [CrossRef]
- Loddo, A.; Buttau, S.; Di Ruberto, C. Deep learning based pipelines for Alzheimer’s disease diagnosis: A comparative study and a novel deep-ensemble method. Comput. Biol. Med. 2022, 141, 105032. [Google Scholar] [CrossRef]
- Ayus, I.; Gupta, D. A novel hybrid ensemble based Alzheimer’s identification system using deep learning technique. Biomed. Signal Process. Control 2024, 92, 106079. [Google Scholar] [CrossRef]
- Mahmud, T.; Barua, K.; Barua, A.; Das, S.; Basnin, N.; Hossain, M.S.; Andersson, K.; Kaiser, M.S.; Sharmen, N. Exploring Deep Transfer Learning Ensemble for Improved Diagnosis and Classification of Alzheimer’s Disease. In Proceedings of the International Conference on Brain Informatics, Hoboken, NJ, USA, 1–3 August 2023; pp. 109–120. [Google Scholar] [CrossRef]
- Khan, Y.F.; Kaushik, B.; Chowdhary, C.L.; Srivastava, G. Ensemble model for diagnostic classification of Alzheimer’s disease based on brain anatomical magnetic resonance imaging. Diagnostics 2022, 12, 3193. [Google Scholar] [CrossRef]
- Raju, M.; Thirupalani, M.; Vidhyabharathi, S.; Thilagavathi, S. Deep learning based multilevel classification of Alzheimer’s disease using MRI scans. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1084, p. 012017. [Google Scholar] [CrossRef]
- Reza, M.S.; Kabir, M.M.J.; Mollah, M.A.R. Improving Alzheimer’s Disease Diagnosis on Brain MRI Scans with an Ensemble of Deep Learning Models. In Proceedings of the 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), Raipur, India, 29–30 December 2023; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Singh, R.; Prabha, C.; Dixit, H.M.; Kumari, S. Alzheimer Disease Detection using Deep Learning. In Proceedings of the 2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS), Erode, India, 18–20 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Alausa, A.S.; Sanchez-Bornot, J.M.; Asadpour, A.; McClean, P.L.; Wong-Lin, K.; (ADNI), A.D.N.I. Alzheimer’s Disease Classification Confidence of Individuals using Deep Learning on Heterogeneous Data. In Proceedings of the UK Workshop on Computational Intelligence, Belfast, UK, 2–4 September 2024; pp. 208–218. [Google Scholar] [CrossRef]
- Sajjad, M.; Ramzan, F.; Khan, M.U.G.; Rehman, A.; Kolivand, M.; Fati, S.M.; Bahaj, S.A. Deep convolutional generative adversarial network for Alzheimer’s disease classification using positron emission tomography (PET) and synthetic data augmentation. Microsc. Res. Tech. 2021, 84, 3023–3034. [Google Scholar] [CrossRef]
- Madhumitha, T.; Nikitha, M.; Chinmayi Supraja, P.; Sitakumari, K. Classification of Alzheimer’s Disease Using Stacking-Based Ensemble and Transfer Learning. In Proceedings of the International Conference on Computer Vision, High-Performance Computing, Smart Devices, and Networks, Kakinada, India, 28–29 December 2022; pp. 179–191. [Google Scholar] [CrossRef]
- Saim, M.; Feroui, A. Classification and Diagnosis of Alzheimer’s Disease based on a combination of Deep Features and Machine Learning. In Proceedings of the 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 8–9 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ismail, W.N.; PP, F.R.; Ali, M.A. A meta-heuristic multi-objective optimization method for Alzheimer’s disease detection based on multi-modal data. Mathematics 2023, 11, 957. [Google Scholar] [CrossRef]
- Ibrahim, R.; Ghnemat, R.; Abu Al-Haija, Q. Improving Alzheimer’s disease and brain tumor detection using deep learning with particle swarm optimization. AI 2023, 4, 551–573. [Google Scholar] [CrossRef]
- Cui, X.; Xiao, R.; Liu, X.; Qiao, H.; Zheng, X.; Zhang, Y.; Du, J. Adaptive LASSO logistic regression based on particle swarm optimization for Alzheimer’s disease early diagnosis. Chemom. Intell. Lab. Syst. 2021, 215, 104316. [Google Scholar] [CrossRef]
- Khoei, T.T.; Labuhn, M.C.; Caleb, T.D.; Hu, W.C.; Kaabouch, N. A stacking-based ensemble learning model with genetic algorithm for detecting early stages of Alzheimer’s disease. In Proceedings of the 2021 IEEE International Conference on Electro Information Technology (EIT), Virtual, 13–15 May 2021; pp. 215–222. [Google Scholar]
- Danon, D.; Arar, M.; Cohen-Or, D.; Shamir, A. Image resizing by reconstruction from deep features. Comput. Vis. Media 2021, 7, 453–466. [Google Scholar] [CrossRef]
- Saponara, S.; Elhanashi, A. Impact of image resizing on deep learning detectors for training time and model performance. In Proceedings of the Applications in Electronics Pervading Industry, Environment and Society, Pisa, Italy, 21–22 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 10–17. [Google Scholar] [CrossRef]
- Simkó, A.; Löfstedt, T.; Garpebring, A.; Nyholm, T.; Jonsson, J. A generalized network for MRI intensity normalization. arXiv 2019, arXiv:1909.05484. [Google Scholar] [CrossRef]
- Kshatri, S.S.; Singh, D. Convolutional neural network in medical image analysis: A review. Arch. Comput. Methods Eng. 2023, 30, 2793–2810. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef]
- Sarvamangala, D.R.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022, 15, 1–22. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Alshalan, R.; Al-Khalifa, H. A deep learning approach for automatic hate speech detection in the Saudi Twittersphere. Appl. Sci. 2020, 10, 8614. [Google Scholar] [CrossRef]
- Alkurdi, D.A.; Cevik, M.; Akgundogdu, A. Advancing Deepfake Detection Using Xception Architecture: A Robust Approach for Safeguarding against Fabricated News on Social Media. Comput. Mater. Contin. 2024, 81, 4285–4305. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble learning. Handb. Brain Theory Neural Netw. 2002, 2, 110–125. [Google Scholar]
- Lumumba, V.W.; Kiprotich, D.; Makena, N.; Kavita, M.; Mpaine, M. Comparative Analysis of Cross-Validation Techniques: LOOCV, K-Folds Cross-Validation, and Repeated K-Folds Cross-Validation in Machine Learning Models. Am. J. Theor. Appl. Stat. 2024, 13, 127–137. [Google Scholar] [CrossRef]
- Nti, I.K.; Nyarko-Boateng, O.; Aning, J. Performance of machine learning algorithms with different K values in K-fold cross-validation. Int. J. Inf. Technol. Comput. Sci. 2021, 13, 61–71. [Google Scholar] [CrossRef]
- Özaltın, Ö. Early Detection of Alzheimer’s Disease from MR Images Using Fine-Tuning Neighborhood Component Analysis and Convolutional Neural Networks. Arab. J. Sci. Eng. 2025, 50, 7781–7800. [Google Scholar] [CrossRef]
- Simic, M. Hard vs. Soft Voting Classifiers. Baeldung Comput. Sci. 2024. Available online: https://www.baeldung.com/cs/hard-vs-soft-voting-classifiers (accessed on 15 January 2025).
- Atif, M.; Anwer, F.; Talib, F. An ensemble learning approach for effective prediction of diabetes mellitus using hard voting classifier. Indian J. Sci. Technol. 2022, 15, 1978–1986. [Google Scholar] [CrossRef]
- Azizi, M.; Aickelin, U.A.; Khorshidi, H.; Baghalzadeh Shishehgarkhaneh, M. Energy valley optimizer: A novel metaheuristic algorithm for global and engineering optimization. Sci. Rep. 2023, 13, 226. [Google Scholar] [CrossRef]
- Gong, G.; Fu, S.; Huang, H.; Huang, H.; Luo, X. Multi-strategy improved snake optimizer based on adaptive lévy flight and dual-lens fusion. Clust. Comput. 2025, 28, 268. [Google Scholar] [CrossRef]
- Bao, X.; Kang, H.; Li, H. An improved binary snake optimizer with gaussian mutation transfer function and hamming distance for feature selection. Neural Comput. Appl. 2024, 36, 9567–9589. [Google Scholar] [CrossRef]
- Peng, L.; Yuan, Z.; Dai, G.; Wang, M.; Li, J.; Song, Z.; Chen, X. A Multi-strategy Improved Snake Optimizer Assisted with Population Crowding Analysis for Engineering Design Problems. J. Bionic Eng. 2024, 21, 1567–1591. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Naidu, G.; Zuva, T.; Sibanda, E.M. A review of evaluation metrics in machine learning algorithms. In Proceedings of the Computer Science On-line Conference; Springer: Berlin/Heidelberg, Germany, 2023; pp. 15–25. [Google Scholar] [CrossRef]
- Bae, D.; Ha, J. Performance Metric for Differential Deep Learning Analysis. J. Internet Serv. Inf. Secur. 2021, 11, 22–33. [Google Scholar] [CrossRef]
- Saxena, A.; Bishwas, A.K.; Mishra, A.A.; Armstrong, R. Comprehensive Study on Performance Evaluation and Optimization of Model Compression: Bridging Traditional Deep Learning and Large Language Models. arXiv 2024, arXiv:2407.15904. [Google Scholar] [CrossRef]
- Foody, G.M. Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient. PLoS ONE 2023, 18, e0291908. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2021, 17, 168–192. [Google Scholar] [CrossRef]
- Miao, J.; Zhu, W. Precision–recall curve (PRC) classification trees. Evol. Intell. 2022, 15, 1545–1569. [Google Scholar] [CrossRef]
- Sathyanarayanan, S.; Tantri, B.R. Confusion matrix-based performance evaluation metrics. Afr. J. Biomed. Res. 2024, 27, 4023–4031. [Google Scholar] [CrossRef]
- Owusu-Adjei, M.; Ben Hayfron-Acquah, J.; Frimpong, T.; Abdul-Salaam, G. Imbalanced class distribution and performance evaluation metrics: A systematic review of prediction accuracy for determining model performance in healthcare systems. PLoS Digit. Health 2023, 2, e0000290. [Google Scholar] [CrossRef]
















| No. | Ref. | Model Architecture | Dataset(s) | Accuracy | Optimization | Key Limitations |
|---|---|---|---|---|---|---|
| 1 | [22] | Deep ensemble learning (CNN-based) | MRI and fMRI datasets | 98.67% (Multiclass) | – | High accuracy but lacks clinical explainability and transparency |
| 2 | [23] | CNN-Conv1D-LSTM and HReENet | Custom datasets (cross-validation) | 99.97% | – | Limited explainability; weak data diversity handling |
| 3 | [24] | Transfer learning + ensemble classifiers | MRI scans | 95% | – | No deep optimization; limited interpretability |
| 4 | [25] | XGB + DT + SVM (ensemble ML) | ADNI | 95.75% | Manual hyperparameter tuning | Depends on tuning; lacks generalization |
| 5 | [26] | VGG16 + Grad-CAM | MRI (binary + multiclass) | 99% | Pretrained (ImageNet) | Limited to single CNN model |
| 6 | [27] | Stacked ensemble (DenseNet, EfficientNet, etc.) | Two ADNI datasets | 99.96% | Model averaging | Computationally expensive |
| 7 | [28] | EfficientNet-B5 | Augmented Alzheimer’s MRI V2 | 96.64% | – | Single dataset; no robustness testing |
| 8 | [29] | CNN + confidence estimation (softmax) | PET, MRI, cognitive data | 83–85% | Softmax temperature tuning | Lower accuracy; limited multiclass evaluation |
| 9 | [30] | DCGAN + VGG16 classifier | Synthetic PET data | 72% | – | Synthetic bias; weak generalization |
| 10 | [31] | Transfer learning with stacked ensemble CNNs | Kaggle MRI dataset | 97.8% | – | Lacks PET/fMRI integration; interpretability gap |
| 11 | [32] | PCA + VGG16/InceptionV3 + ML classifiers | ADNI, Kaggle | 73.4–77% | – | Relies on traditional ML; limited accuracy |
| 12 | [33] | MultiAz-Net (PET + MRI fusion + MOGOA) | Public AD datasets | 92.3% | Multi-objective GOA | Limited clinical generalization |
| 13 | [34] | CNN + PSO | ADNI, Kaggle, Brain Tumor | 97.12–98.83% | PSO | No benchmarking against other optimizers |
| 14 | [35] | PSO + Adaptive LASSO (PSO-ALLR) | ADNI (197 MRI scans) | 76.13–96.27% | PSO + LASSO | Small dataset; lacks deep learning |
| 15 | [36] | Stacking + Genetic Algorithm (traditional ML) | CN, MCI, AD (unspecified) | 96.7% | GA | No CNN integration; relies on hand-crafted features |
| Parameters | Values |
|---|---|
| Input Shape | (124, 124, 3) |
| Conv2D Layer 1 | 32 filters, (3 × 3) kernel, ReLU activation |
| MaxPooling2D Layer 1 | (2 × 2) pool size |
| Conv2D Layer 2 | 32 filters, (3 × 3) kernel, ReLU activation |
| MaxPooling2D Layer 2 | (2 × 2) pool size |
| Dropout Layer | 0.8 dropout rate |
| Flatten Layer | - |
| Dense Layer 1 | 128 units, ReLU activation |
| Output Dense Layer | 4 units, Softmax activation |
| Optimizer | Adam |
| Loss Function | Categorical Crossentropy |
| Metrics | Accuracy |
| Epochs | 10 |
| Batch Size | 32 |
| Parameters | Values |
|---|---|
| Input Shape | (124, 124, 3) |
| Base Model | Pretrained MobileNet (include_top=False, pooling=’avg’) |
| Trainable Layers | Last 2 layers unfrozen, others frozen |
| Dense Layer 1 | 2024 units, ReLU activation |
| Dropout Layer 1 | 0.1 dropout rate |
| Dense Layer 2 | 2024 units, ReLU activation |
| Dropout Layer 2 | 0.1 dropout rate |
| Dense Layer 3 | 1024 units, ReLU activation |
| Dropout Layer 3 | 0.1 dropout rate |
| Dense Layer 4 | 512 units, ReLU activation |
| Dropout Layer 4 | 0.5 dropout rate |
| Output Dense Layer | 4 units, Softmax activation |
| Optimizer | Adam |
| Loss Function | Categorical Crossentropy |
| Metrics | Accuracy |
| Epochs | 10 |
| Batch Size | 32 |
| Parameters | Values |
|---|---|
| Input Shape | (124, 124, 3) |
| Base Model | Pretrained Xception (include_top = False, weights = ’imagenet’) |
| Trainable Layers | Last 2 layers unfrozen, others frozen |
| Flatten Layer | Applied after base model output |
| Dense Layer 1 | 2048 units, ReLU activation |
| Dense Layer 2 | 1024 units, ReLU activation |
| Dropout Layer 1 | 0.5 dropout rate |
| Dense Layer 3 | 512 units, ReLU activation |
| Dropout Layer 2 | 0.3 dropout rate |
| Dense Layer 4 | 256 units, ReLU activation |
| Dropout Layer 3 | 0.3 dropout rate |
| Dense Layer 5 | 128 units, ReLU activation |
| Dropout Layer 4 | 0.3 dropout rate |
| Output Dense Layer | 4 units, Softmax activation |
| Optimizer | Adam |
| Loss Function | Categorical Crossentropy |
| Metrics | Accuracy |
| Epochs | 10 |
| Batch Size | 32 |
| Parameters | Values |
|---|---|
| Input Shape | (224, 224, 3) |
| Patch Size | |
| Embedding Dimension | 768 |
| Transformer Layers | 12 |
| Attention Heads | 12 |
| MLP Hidden Size | 3072 |
| Dropout Rate | 0.1 |
| Optimizer | AdamW |
| Loss Function | Categorical Crossentropy |
| Metrics | Accuracy |
| Epochs | 10 |
| Batch Size | 32 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| NonDemented | 0.91 | 0.84 | 0.88 |
| MildDemented | 0.80 | 0.92 | 0.86 |
| VeryMildDemented | 0.85 | 0.78 | 0.81 |
| ModerateDemented | 0.97 | 1.00 | 0.98 |
| Accuracy | 0.88 | ||
| Macro avg | 0.89 | 0.89 | 0.88 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| NonDemented | 0.82 | 0.70 | 0.75 |
| MildDemented | 0.88 | 0.84 | 0.86 |
| VeryMildDemented | 0.65 | 0.76 | 0.70 |
| ModerateDemented | 0.96 | 1.00 | 0.98 |
| Accuracy | 0.81 | ||
| Macro avg | 0.83 | 0.83 | 0.82 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| NonDemented | 0.87 | 0.78 | 0.82 |
| MildDemented | 0.87 | 0.92 | 0.89 |
| VeryMildDemented | 0.77 | 0.80 | 0.78 |
| ModerateDemented | 0.98 | 0.99 | 0.98 |
| Accuracy | 0.86 | ||
| Macro avg | 0.87 | 0.87 | 0.87 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| NonDemented | 0.94 | 0.88 | 0.91 |
| MildDemented | 0.91 | 0.97 | 0.94 |
| VeryMildDemented | 0.88 | 0.88 | 0.88 |
| ModerateDemented | 1.00 | 1.00 | 1.00 |
| Accuracy | 0.93 | ||
| Macro Avg | 0.93 | 0.93 | 0.93 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| 0 | 0.88 | 0.90 | 0.89 |
| 1 | 0.88 | 0.90 | 0.89 |
| 2 | 0.92 | 0.93 | 0.92 |
| 3 | 0.99 | 0.99 | 0.99 |
| Accuracy | 0.90 | ||
| Macro Avg | 0.92 | 0.93 | 0.92 |
| Model | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| Ensemble | 0.9280 | 0.93 | 0.93 | 0.93 |
| CNN Optimized (Snake + EVO) | 0.9002 | 0.91 | 0.90 | 0.90 |
| CNN | 0.8722 | 0.88 | 0.88 | 0.88 |
| Xception | 0.8682 | 0.86 | 0.86 | 0.86 |
| MobileNet | 0.8172 | 0.88 | 0.88 | 0.88 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| Mild Demented | 0.93 | 0.98 | 0.95 |
| Non Demented | 0.95 | 0.88 | 0.92 |
| Very Demented | 0.96 | 0.92 | 0.94 |
| Accuracy | 0.94 | ||
| Macro Avg | 0.95 | 0.93 | 0.94 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| Mild Demented | 0.96 | 0.98 | 0.97 |
| Non Demented | 0.96 | 0.97 | 0.97 |
| Very Demented | 0.98 | 0.94 | 0.96 |
| Accuracy | 0.97 | ||
| Macro Avg | 0.97 | 0.96 | 0.97 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| Mild Demented | 0.86 | 0.92 | 0.89 |
| Non Demented | 0.89 | 0.80 | 0.84 |
| Very Demented | 0.86 | 0.82 | 0.84 |
| Accuracy | 0.86 | ||
| Macro Avg | 0.87 | 0.85 | 0.86 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| Mild Demented | 0.97 | 0.99 | 0.98 |
| Non Demented | 0.99 | 0.99 | 0.99 |
| Very Demented | 0.99 | 0.95 | 0.97 |
| Accuracy | 0.98 | ||
| Macro Avg | 0.98 | 0.98 | 0.98 |
| Class | Precision | Recall | F1-Score |
|---|---|---|---|
| Mild Demented | 0.99 | 0.99 | 0.99 |
| Non Demented | 0.99 | 1.00 | 1.00 |
| Very Demented | 0.99 | 0.99 | 0.99 |
| Accuracy | 0.99 | ||
| Macro Avg | 0.99 | 0.99 | 0.99 |
| Model | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| MobileNet Optimized | 0.9933 | 0.99 | 0.99 | 0.99 |
| Ensemble | 0.9812 | 0.98 | 0.98 | 0.98 |
| MobileNet | 0.9677 | 0.97 | 0.96 | 0.97 |
| CNN | 0.9408 | 0.95 | 0.93 | 0.94 |
| Xception | 0.8641 | 0.87 | 0.85 | 0.86 |
| Model | Acc | F1 | Params | Inf/img (ms) | Train (s) | FLOPs |
|---|---|---|---|---|---|---|
| CNN | 0.8795 | 0.8793 | 3.46M | 0.33 | 883.7 | – |
| MobileNet | 0.8511 | 0.8510 | 3.49M | 0.52 | – | – |
| Xception | 0.8014 | 0.7985 | 21.4M | 0.86 | – | – |
| ViT | 0.7442 | 0.7420 | 0.20M | 0.49 | – | – |
| Model | Acc | F1 | Params | Inf/img (ms) | Train (s) | FLOPs |
|---|---|---|---|---|---|---|
| CNN Opt. (Snake+EVO) | 0.9981 | 0.9981 | 22.2M | 1.41 | – | – |
| CNN | 0.9922 | 0.9922 | 22.2M | 1.41 | 302.3 | 1.23B |
| MobileNet | 0.9842 | 0.9842 | 3.49M | 2.55 | 220.0 | 0.35B |
| ViT | 0.9543 | 0.9543 | 0.21M | 2.43 | 350.0 | 0.52B |
| Xception | 0.9175 | 0.9171 | 21.3M | 4.00 | 400.0 | 0.86B |
| Reference | Model or Method | Dataset(s) | Accuracy |
|---|---|---|---|
| [34] | CNN + Particle Swarm Optimization (PSO) | ADNI, Kaggle, Brain Tumor | 97.12–98.83% |
| [35] | PSO-ALLR (PSO + Adaptive LASSO) | ADNI (197 MRI scans) | 76.13–96.27% |
| [36] | Stacking Ensemble + Genetic Algorithm | Not specified (CN, MCI, AD) | 96.7% |
| Proposed Model | CNN Optimized (Snake + EVO) | Private MRI Dataset (Libya) | 99.81% |
| Model | Accuracy (mean ± std) | F1-Score (mean ± std) |
|---|---|---|
| CNN | 85.45% ± 0.63% | 86.54% ± 0.64% |
| MobileNet | 80.20% ± 0.97% | 79.06% ± 0.99% |
| Xception | 84.96% ± 0.65% | 85.13% ± 0.63% |
| CNN (Optimized) | 88.73% ± 0.00% | 88.00% ± 0.00% |
| Ensemble (Voting) | 91.77% ± 0.00% | 91.79% ± 0.00% |
| Model | Accuracy (%) | F1-Score (%) | Best Fold (val_acc) |
|---|---|---|---|
| CNN | 99.97 ± 0.06 | 99.97 ± 0.06 | Fold 2 (100.00%) |
| MobileNet | 98.77 ± 0.34 | 98.77 ± 0.34 | Fold 4 (99.26%) |
| Xception | 91.75 ± 1.75 | 91.71 ± 1.78 | Fold 4 (93.31%) |
| ViT | 95.43 ± 1.44 | 95.43 ± 1.46 | Fold 2 (97.18%) |
| Model | Accuracy (%) | F1-Score (%) | Best Checkpoint | Notes |
|---|---|---|---|---|
| CNN | 88.17 ± 0.89 | 88.16 ± 0.90 | cnn_fold_1.keras (val_acc=88.78) | Best overall |
| MobileNet | 85.06 ± 0.78 | 84.88 ± 0.86 | mobilenet_fold_3.keras (val_acc=86.02) | High recall in Mild/Moderate |
| ViT | 72.49 ± 1.59 | 72.16 ± 1.85 | vit_fold_4.keras (val_acc=73.88) | Lower but competitive baseline |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhagi, A.M.R.; Ata, O. Hybrid Ensemble Deep Learning Framework with Snake and EVO Optimization for Multiclass Classification of Alzheimer’s Disease Using MRI Neuroimaging. Electronics 2025, 14, 4328. https://doi.org/10.3390/electronics14214328
Alhagi AMR, Ata O. Hybrid Ensemble Deep Learning Framework with Snake and EVO Optimization for Multiclass Classification of Alzheimer’s Disease Using MRI Neuroimaging. Electronics. 2025; 14(21):4328. https://doi.org/10.3390/electronics14214328
Chicago/Turabian StyleAlhagi, Arej Masod Rajab, and Oğuz Ata. 2025. "Hybrid Ensemble Deep Learning Framework with Snake and EVO Optimization for Multiclass Classification of Alzheimer’s Disease Using MRI Neuroimaging" Electronics 14, no. 21: 4328. https://doi.org/10.3390/electronics14214328
APA StyleAlhagi, A. M. R., & Ata, O. (2025). Hybrid Ensemble Deep Learning Framework with Snake and EVO Optimization for Multiclass Classification of Alzheimer’s Disease Using MRI Neuroimaging. Electronics, 14(21), 4328. https://doi.org/10.3390/electronics14214328

