Transmission-Reflection-Integrated Bifunctional Metasurface by Hybridizing Geometric Phase and Propagation Phase
Abstract
1. Introduction
2. Results
2.1. Theoretical Analysis
2.2. Meta-Atom Design
2.3. Designs and Simulations of the Transmission-Reflection-Integrated Bifunctional Metasurface
3. Experiment and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LCP | Left-handed circular polarization | 
| RCP | Right-handed circular polarization | 
| OAM | orbital angular momentum | 
| LP | linear polarizations | 
| PB | Pancharatnam–Berry | 
References
- Chen, H.T.; Taylor, A.J.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.T.; Kim, H.; Kenney, M.; Park, H.S.; Kim, H.; Min, B.; Zhang, S. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Adv. Opt. Mater. 2018, 6, 1700507. [Google Scholar] [CrossRef]
- Zheng, C.; Li, J.; Yue, Z.; Li, J.; Liu, J.; Wang, G.; Wang, S.; Zhang, Y.; Zhang, Y.; Yao, J. All-dielectric trifunctional metasurface capable of independent amplitude and phase modulation. Laser Photonics Rev. 2022, 16, 2200051. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, M.; Zhang, C.; Zhu, W.; Wang, Y.; Lin, P.; Yan, F.; Chen, L.; Lezec, H.J.; Lu, Y.; et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett. 2020, 125, 267402. [Google Scholar] [CrossRef]
- Ran, Y.; Liang, J.; Cai, T.; Li, H. High-performance broadband vortex beam generator using reflective Pancharatnam-Berry metasurface. Opt. Commun. 2018, 427, 101–106. [Google Scholar] [CrossRef]
- Akram, M.R.; Ding, G.; Chen, K.; Feng, Y.; Zhu, W. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater. 2020, 32, 1907308. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Ma, H.; Qu, S.; Xu, Z.; Zhang, A.; Yan, M.; Li, Y. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 2014, 115, 154504. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhang, J.Q.; Qu, S.B.; Wang, J.-F.; Zheng, L.; Zhou, H.; Xu, Z.; Zhang, A.-X. Wide-band circular polarization-keeping reflection mediated by metasurface. Chin. Phys. B 2015, 24, 014202. [Google Scholar] [CrossRef]
- Su, P.; Zhao, Y.; Jia, S.; Shi, W.; Wang, H. An ultra-wideband and polarization-independent metasurface for RCS reduction. Sci. Rep. 2016, 6, 20387. [Google Scholar] [CrossRef]
- Sang, D.; Chen, Q.; Ding, L.; Guo, M.; Fu, Y. Design of checkerboard AMC structure for wideband RCS reduction. IEEE Trans. Antennas Propag. 2019, 67, 2604–2612. [Google Scholar] [CrossRef]
- Fu, X.; Yang, J.; Wang, J.; Jia, Y.; Wang, Z.; Han, Y.; Chen, H.; Jiang, J.; Ding, C.; Li, Y.; et al. Active-passive compound metasurface for simultaneously manipulating radiation and scattering in wide band. Mater. Des. 2023, 230, 111932. [Google Scholar] [CrossRef]
- Cheng, L.; Hong, W.; Hao, Z. Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Sci. Rep. 2014, 4, 4814. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Shi, G.; Zhu, C.; Zhou, X.; Shi, Y. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 2016, 108, 121903. [Google Scholar] [CrossRef]
- Li, L.; Cui, T.J.; Ji, W.; Liu, S.; Ding, J.; Wan, X.; Li, Y.B.; Jiang, M.; Qiu, C.-W.; Zhang, S. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 2017, 8, 197. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Sain, B.; Wei, Q.; Tang, C.; Li, X.; Weiss, T.; Huang, L.; Wang, Y.; Zentgraf, T. Multichannel vectorial holographic display and encryption. Light. Sci. Appl. 2018, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Aieta, F.; Kats, M.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Zhu, W.; Song, Q.; Yan, L.; Zhang, W.; Wu, P.; Chin, L.K.; Cai, H.; Tsai, D.P.; Shen, Z.X.; Deng, T.W.; et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater. 2015, 27, 4739–4743. [Google Scholar] [CrossRef]
- Ling, X.; Xiao, W.; Chen, S.; Zhou, X.; Luo, H.; Zhou, L. Revisiting the anomalous spin-Hall effect of light near the Brewster angle. Phys. Rev. A 2021, 103, 033515. [Google Scholar] [CrossRef]
- Cohen, E.; Larocque, H.; Bouchard, F.; Nejadsattari, F.; Gefen, Y.; Karimi, E. Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond. Nat. Rev. Phys. 2019, 1, 437–449. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, J.; Han, Y.; Zhu, R.; Zhang, Z.; Yang, J.; Meng, Y.; Li, Y.; Qu, S. Quasi-omnibearing retro-reflective metagrating protected by reciprocity. Photonics Res. 2022, 10, 843–854. [Google Scholar] [CrossRef]
- Faraz, F.; Li, Z.; Zhang, Z.; Rehman Abbasi, T.U.; Wang, X.; Rukhlenko, I.D.; Zhu, W. High-Efficiency Geometric Phase Metasurface with Multifold Rotationally Symmetric Resonators. ACS Appl. Opt. Mater. 2022, 1, 173–178. [Google Scholar] [CrossRef]
- Deng, J.; Duan, J.; Fu, R.; Geng, Y.; Lu, H.; Gao, F.; Yan, B. Full-space metasurfaces for independent manipulation of transmission and reflection. Opt. Lett. 2024, 49, 4934–4937. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Wu, M.; Lu, G.; Geng, Z.; Qu, Y. High-efficiency full-space terahertz holography with interleaved Janus metasurfaces. Opt. Lasers Eng. 2025, 195, 109250. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Mehrzad, Z.; Javadi, S.; Mili, M.R.; Jorswieck, E.; Al-Dhahir, N. Stacked Intelligent Metasurfaces and STAR-RIS-enabled Terahertz ISAC System. IEEE Trans. Veh. Technol. 2025, 1–6. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Liu, T.; Zhang, F. Hybrid-phase assisted amplitude and phase control using full-space metasurface. Adv. Opt. Mater. 2024, 12, 2302153. [Google Scholar] [CrossRef]
- Jones, R. A new calculus for the treatment of optical systems I. description and discussion of the calculus. J. Opt. Soc. Am. 1941, 31, 488–493. [Google Scholar] [CrossRef]
- Menzel, C.; Rockstuhl, C.; Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 2010, 82, 053811. [Google Scholar] [CrossRef]
- Bai, Y.; Lv, H.; Fu, X.; Yang, Y. Vortex beam: Generation and detection of orbital angular momentum. Chin. Opt. Lett. 2022, 20, 012601. [Google Scholar] [CrossRef]
- Li, S.J.; Li, Z.Y.; Huang, G.S.; Bin Liu, X.; Li, R.Q.; Cao, X.Y. Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys. 2022, 17, 62501. [Google Scholar] [CrossRef]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Kenney, M.; Su, X.; Xu, N.; Ouyang, C.; Shi, Y.; Han, J.; Zhang, W.; Zhang, S. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 2014, 26, 5031–5036. [Google Scholar] [CrossRef] [PubMed]






| Unit Cell Number | l1 (mm) | l2 (mm) | l3 (mm) | l4 (mm) | l5 (mm) | w (mm) | 
|---|---|---|---|---|---|---|
| 1 | 8.0 | 2.0 | 2.0 | 4.0 | 4.33 | 0.2 | 
| 2 | 8.0 | 2.0 | 2.0 | 4.0 | 4.27 | 0.2 | 
| 3 | 8.0 | 2.0 | 2.0 | 4.0 | 4.2 | 0.2 | 
| 4 | 8.0 | 2.0 | 2.0 | 4.0 | 4.13 | 0.2 | 
| 5 | 8.0 | 2.0 | 2.0 | 4.0 | 4.05 | 0.2 | 
| 6 | 8.0 | 2.0 | 2.0 | 4.0 | 3.97 | 0.2 | 
| 7 | 8.0 | 2.0 | 2.0 | 4.0 | 3.87 | 0.2 | 
| 8 | 8.0 | 2.0 | 2.0 | 4.0 | 3.75 | 0.2 | 
| 9 | 8.0 | 2.0 | 2.0 | 4.0 | 3.60 | 0.2 | 
| 10 | 8.0 | 2.0 | 2.0 | 4.0 | 3.40 | 0.2 | 
| 11 | 8.0 | 2.0 | 2.0 | 4.0 | 3.14 | 0.2 | 
| 12 | 8.0 | 2.0 | 2.0 | 4.0 | 2.91 | 0.2 | 
| Tr1 (Ω) | Tr2 (Ω) | Tr3 (Ω) | Tr4 (Ω) | Tr5 (Ω) | Tr6 (Ω) | Tr7 (Ω) | Tr8 (Ω) | ||
|---|---|---|---|---|---|---|---|---|---|
| Amplitude Level | 0.8–1 | 0.7–0.8 | 0.6–0.7 | 0.5–0.6 | 0.4–0.5 | 0.3–0.4 | 0.2–0.3 | 0–0.2 | |
| Number | 1 | 0 | 50 | 90 | 140 | 180 | 220 | 260 | 300 | 
| 2 | 0 | 50 | 90 | 140 | 180 | 220 | 260 | 300 | |
| 3 | 0 | 50 | 80 | 130 | 170 | 220 | 250 | 300 | |
| 4 | 0 | 50 | 80 | 140 | 170 | 220 | 250 | 290 | |
| 5 | 0 | 50 | 90 | 140 | 170 | 210 | 240 | 290 | |
| 6 | 0 | 60 | 90 | 140 | 170 | 210 | 240 | 290 | |
| 7 | 0 | 60 | 90 | 150 | 180 | 210 | 240 | 300 | |
| 8 | 0 | 50 | 100 | 150 | 180 | 210 | 250 | 290 | |
| 9 | 0 | 50 | 90 | 130 | 170 | 200 | 240 | 290 | |
| 10 | 0 | 60 | 100 | 150 | 180 | 200 | 250 | 300 | |
| 11 | 0 | 60 | 100 | 130 | 170 | 210 | 250 | 290 | |
| 12 | 0 | 60 | 100 | 150 | 160 | 210 | 250 | 300 | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, Z.; Li, T.; Gu, J.; Shi, Y.; Zhang, J.; Sun, H.; Wang, J. Transmission-Reflection-Integrated Bifunctional Metasurface by Hybridizing Geometric Phase and Propagation Phase. Electronics 2025, 14, 4250. https://doi.org/10.3390/electronics14214250
Liu Z, Wang Z, Li T, Gu J, Shi Y, Zhang J, Sun H, Wang J. Transmission-Reflection-Integrated Bifunctional Metasurface by Hybridizing Geometric Phase and Propagation Phase. Electronics. 2025; 14(21):4250. https://doi.org/10.3390/electronics14214250
Chicago/Turabian StyleLiu, Zhaotang, Zhenxu Wang, Tiefu Li, Jinxin Gu, Yunzhou Shi, Jie Zhang, Huiting Sun, and Jiafu Wang. 2025. "Transmission-Reflection-Integrated Bifunctional Metasurface by Hybridizing Geometric Phase and Propagation Phase" Electronics 14, no. 21: 4250. https://doi.org/10.3390/electronics14214250
APA StyleLiu, Z., Wang, Z., Li, T., Gu, J., Shi, Y., Zhang, J., Sun, H., & Wang, J. (2025). Transmission-Reflection-Integrated Bifunctional Metasurface by Hybridizing Geometric Phase and Propagation Phase. Electronics, 14(21), 4250. https://doi.org/10.3390/electronics14214250
 
        


 
       