SolPowNet: Dust Detection on Photovoltaic Panels Using Convolutional Neural Networks
Abstract
1. Introduction
- A flexible and novel CNN architecture has been developed that allows for the easy modification of all layer sizes and structures.
- Compared to pre-trained CNN models, the developed SolPowNet CNN model is lightweight.
- Dust detection can be performed more rapidly from PV images using devices with a lower hardware capacity. As a result, it offers a usage advantage in real-time analyses for systems operating with drones or stationary monitoring cameras.
- The SolPowNet CNN model demonstrates better performance than existing methods in literature.
2. Related Work
3. Materials and Methods
3.1. Effect of Dust on Light Attenuation in PV Panels
3.2. Dataset
3.3. Architecture of the Convolutional Neural Network
3.3.1. Convolutional Layer
3.3.2. Pooling Layer
3.3.3. Fully Connected Layer
3.4. Transfer Learning
3.4.1. AlexNet
3.4.2. VGG16
3.4.3. VGG19
3.4.4. ResNet50
3.4.5. Inception V3
3.5. Proposed CNN Model: SolPowNet
3.6. Metrics for Evaluating Performance
4. Experimental Setup
| Algorithm 1. trainSolPowNet (•) | 
| Input: Dataset | 
| Output: trained SolPowNet (•) | 
| 1: Image_resize ← (224 ×224 × 3) | 
| 2: { Xtrain, Xvalidation, Xtest } ← train_validation_test_split (Dataset) | 
| 3: Initialise: W ← random (•) B ← random (•) Lr ← 0.0001 epochs ← 50 | 
| 4: while epoch ≤ epochs do | 
| 5: Perform forward propagation with Equation (9) | 
| 6: Calculate cost for forward propagation from Equation (10) | 
| 7: Optimize cost function with Adam optimizer | 
| 8: { W’, b’ } ← gradient_descent (W, b, Xtrain, loss) | 
| 9: end while | 
| 10: save (trained SolPowNet) | 
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, J.; Dong, Q.; Song, Y.; Zhao, X.; Shi, L. Combining Dust Scaling Behaviors of PV Panels and Water Cleaning Methods. Renew. Sustain. Energy Rev. 2025, 212, 115394. [Google Scholar] [CrossRef]
- Onim, M.S.H.; Sakif, Z.M.M.; Ahnaf, A.; Kabir, A.; Azad, A.K.; Oo, A.M.T.; Afreen, R.; Hridy, S.T.; Hossain, M.; Jabid, T.; et al. SolNet: A Convolutional Neural Network for Detecting Dust on Solar Panels. Energies 2023, 16, 155. [Google Scholar] [CrossRef]
- Hussain, A.; Batra, A.; Pachauri, R. An Experimental Study on Effect of Dust on Power Loss in Solar Photovoltaic Module. Renew. Wind Water Sol. 2017, 4, 9. [Google Scholar] [CrossRef]
- Adinoyi, M.J.; Said, S.A.M. Effect of Dust Accumulation on the Power Outputs of Solar Photovoltaic Modules. Renew. Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Paudyal, B.R.; Shakya, S.R. Dust Accumulation Effects on Efficiency of Solar PV Modules for off Grid Purpose: A Case Study of Kathmandu. Sol. Energy 2016, 135, 103–110. [Google Scholar] [CrossRef]
- Vaishak, S.; Bhale, P.V. Effect of Dust Deposition on Performance Characteristics of a Refrigerant Based Photovoltaic/Thermal System. Sustain. Energy Technol. Assess. 2019, 36, 100548. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of Dust, Humidity and Air Velocity on Efficiency of Photovoltaic Cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Noura, H.N.; Chahine, K.; Bassil, J.; Abou Chaaya, J.; Salman, O. Efficient Combination of Deep Learning Models for Solar Panel Damage and Soiling Detection. Measurement 2025, 251, 117185. [Google Scholar] [CrossRef]
- Abdelsattar, M.; Rasslan, A.A.A.; Emad-Eldeen, A. Detecting Dusty and Clean Photovoltaic Surfaces Using MobileNet Variants for Image Classification. SVU-Int. J. Eng. Sci. Appl. 2025, 6, 9–18. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Comput. Intell. Neurosci. 2016, 2016, 3289801. [Google Scholar] [CrossRef]
- Yilmaz, A. Brain Tumor Detection from MRI Images with Using Proposed Deep Learning Model: The Partial Correlation-Based Channel Selection. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 2615–2633. [Google Scholar] [CrossRef]
- Sun, T.; Gao, H.; Fan, S.; Hu, X. Enhancing Dust Detection on Photovoltaic Panels with PP-YOLO: A Deep Learning Approach. In Proceedings of the 2024 4th International Conference on Machine Learning and Intelligent Systems Engineering (MLISE), Zhuhai, China, 28–30 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 24–28. [Google Scholar] [CrossRef]
- Maghami, M.; Hizam, H.; Gomes, C. Impact of Dust on Solar Energy Generation Based on Actual Performance. In Proceedings of the 2014 IEEE International Conference on Power and Energy (PECon), Kuching, Malaysia, 1–3 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 388–393. [Google Scholar] [CrossRef]
- Mehta, S.; Singh, M. Optimizing Solar Energy Output Through Automated Dust Detection Using CNN-SVM. In Proceedings of the 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 920–924. [Google Scholar] [CrossRef]
- Ghosh, A.; Afrin, S.; Tithy, R.S.; Nahid, F.; Alam, F.; Reza, A.W. Improving Solar Panel Efficiency: A CNN-Based System for Dust Detection and Maintenance. In Proceedings of the 2nd International Conference on Big Data, IoT and Machine Learning, Dhaka, Bangladesh, 6–8 September 2023; Volume 867, pp. 673–684. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Cao, S.; Zhao, B.; Sun, T.; Liu, P. A Deep Residual Neural Network Identification Method for Uneven Dust Accumulation on Photovoltaic (PV) Panels. Energy 2022, 239, 122302. [Google Scholar] [CrossRef]
- Bashir, S.B.; Farag, M.M.; Hamid, A.-K.; Adam, A.A.; Bansal, R.C.; Mbungu, N.T.; Elnady, A.; Abo-Khalil, A.G.; Hussein, M. Innovative Dust Detection and Efficient Cleaning of PV Panels: A CNN-RF Approach Using I–V Curve Data Transformed into RGB Mosaics. Energy Convers. Manag. X 2025, 27, 101079. [Google Scholar] [CrossRef]
- Winkel, P.; Wilbert, S.; Röger, M.; Krauth, J.J.; Algner, N.; Nouri, B.; Wolfertstetter, F.; Carballo, J.A.; Alonso-Garcia, M.C.; Polo, J.; et al. Cell-Resolved PV Soiling Measurement Using Drone Images. Remote Sens. 2024, 16, 2617. [Google Scholar] [CrossRef]
- Khalid, H.M.; Rafique, Z.; Muyeen, S.M.; Raqeeb, A.; Said, Z.; Saidur, R.; Sopian, K. Dust Accumulation and Aggregation on PV Panels: An Integrated Survey on Impacts, Mathematical Models, Cleaning Mechanisms, and Possible Sustainable Solution. Sol. Energy 2023, 251, 261–285. [Google Scholar] [CrossRef]
- Bassil, J.; Noura, H.N.; Salman, O.; Chahine, K.; Guizani, M. Efficient Combination of Deep Learning and Tree-Based Classification Models for Solar Panel Dust Detection. Intell. Syst. Appl. 2025, 26, 200509. [Google Scholar] [CrossRef]
- Alatwi, A.M.; Albalawi, H.; Wadood, A.; Anwar, H.; El-Hageen, H.M. Deep Learning-Based Dust Detection on Solar Panels: A Low-Cost Sustainable Solution for Increased Solar Power Generation. Sustainability 2024, 16, 8664. [Google Scholar] [CrossRef]
- Özer, T.; Türkmen, Ö. An Approach Based on Deep Learning Methods to Detect the Condition of Solar Panels in Solar Power Plants. Comput. Electr. Eng. 2024, 116, 109143. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y. Deep Learning for Dust Accumulation Analysis on Desert Solar Panels: A CNN-Transformer Approach. IEEE Access 2025, 13, 69857–69872. [Google Scholar] [CrossRef]
- Abd, H.S.; Judran, H.K.; Aun, S.H.A.; Jaddoa, A.A.; Hammoodi, K.A.; Kadhim, S.A.; Daif, J.M. Dust Deposition and Cleaning Effect on PV Panel: Experimental Approach. Results Eng. 2025, 27, 106041. [Google Scholar] [CrossRef]
- Abuqaaud, K.A.; Ferrah, A. A Novel Technique for Detecting and Monitoring Dust and Soil on Solar Photovoltaic Panel. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, C.; Xing, L.; Sun, H.; Zhao, Q.; Zhang, L. A New Dust Detection Method for Photovoltaic Panel Surface Based on Pytorch and Its Economic Benefit Analysis. Energy AI 2024, 16, 100349. [Google Scholar] [CrossRef]
- Al-Addous, M.; Dalala, Z.; Alawneh, F.; Class, C.B. Modeling and Quantifying Dust Accumulation Impact on PV Module Performance. Sol. Energy 2019, 194, 86–102. [Google Scholar] [CrossRef]
- Fatima, K.; Faiz Minai, A.; Malik, H.; García Márquez, F.P. Experimental Analysis of Dust Composition Impact on Photovoltaic Panel Performance: A Case Study. Sol. Energy 2024, 267, 112206. [Google Scholar] [CrossRef]
- Yakubu, S.; Samikannu, R.; Gawusu, S.; Wetajega, S.D.; Okai, V.; Shaibu, A.K.S.; Workneh, G.A. A Holistic Review of the Effects of Dust Buildup on Solar Photovoltaic Panel Efficiency. Sol. Compass 2025, 13, 100101. [Google Scholar] [CrossRef]
- Chen, L.; Fan, S.; Sun, S.; Cao, S.; Sun, T.; Liu, P.; Gao, H.; Zhang, Y.; Ding, W. A Detection Model for Dust Deposition on Photovoltaic (PV) Panels Based on Light Transmittance Estimation. Energy 2025, 322, 135284. [Google Scholar] [CrossRef]
- Dutta, G. Dataset of Solar Panel Dust Detection. Available online: https://www.kaggle.com/datasets/hemanthsai7/solar-panel-dust-detection (accessed on 10 March 2025).
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Aslan, M. CoviDetNet: A New COVID-19 Diagnostic System Based on Deep Features of Chest x-Ray. Int. J. Imaging Syst. Technol. 2022, 32, 1447–1463. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, X.; Chen, L. Speech Emotion Recognition Using Deep 1D & 2D CNN LSTM Networks. Biomed. Signal Process. Control. 2019, 47, 312–323. [Google Scholar] [CrossRef]
- Balaha, H.M.; El-Gendy, E.M.; Saafan, M.M. CovH2SD: A COVID-19 Detection Approach Based on Harris Hawks Optimization and Stacked Deep Learning. Expert Syst. Appl. 2021, 186, 115805. [Google Scholar] [CrossRef]
- Lei, X.; Pan, H.; Huang, X. A Dilated Cnn Model for Image Classification. IEEE Access 2019, 7, 124087–124095. [Google Scholar] [CrossRef]
- Woźniak, M.; Siłka, J.; Wieczorek, M. Deep Neural Network Correlation Learning Mechanism for CT Brain Tumor Detection. Neural Comput. Appl. 2023, 35, 14611–14626. [Google Scholar] [CrossRef]
- Pires de Lima, R.; Marfurt, K. Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis. Remote Sens. 2019, 12, 86. [Google Scholar] [CrossRef]
- Hussain, M.; Bird, J.J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification. In Proceedings of the 18th UK Workshop on Computational Intelligence, Nottinghma, UK, 5–7 September 2018; Volume 840, pp. 191–202. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 2, 1097–1105. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar] [CrossRef]
- Praharsha, C.H.; Poulose, A. CBAM VGG16: An Efficient Driver Distraction Classification Using CBAM Embedded VGG16 Architecture. Comput. Biol. Med. 2024, 180, 108945. [Google Scholar] [CrossRef]
- Mascarenhas, S.; Agarwal, M. A Comparison between VGG16, VGG19 and ResNet50 Architecture Frameworks for Image Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; pp. 96–99. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Bohlol, P.; Hosseinpour, S.; Soltani Firouz, M. Improved Food Recognition Using a Refined ResNet50 Architecture with Improved Fully Connected Layers. Curr. Res. Food Sci. 2025, 10, 101005. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Onim, M.S.H.; Nyeem, H.; Roy, K.; Hasan, M.; Ishmam, A.; Akif, M.A.H.; Ovi, T.B. BLPnet: A New DNN Model and Bengali OCR Engine for Automatic Licence Plate Recognition. Array 2022, 15, 100244. [Google Scholar] [CrossRef]
- Cao, J.; Yan, M.; Jia, Y.; Tian, X.; Zhang, Z. Application of a Modified Inception-v3 Model in the Dynasty-Based Classification of Ancient Murals. EURASIP J. Adv. Signal Process. 2021, 2021, 49. [Google Scholar] [CrossRef]













| Study | Methodology | Innovations | Performance | 
|---|---|---|---|
| Cell Resolved PV Soiling Measurement Using Drone Images [18] | Drone based RGB imaging and optical–electrical correlation to measure cell wise soiling. | Cell-level soiling loss visualization validated with electrical tests. | RMSE ≈ 1% | 
| Dust Accumulation and Aggregation on PV Panels [19] | Mathematical model derivation for dust impact and cleaning | Integrates the power derating factor, soiling loss index, and bilinear power models. | Cleaning efficiencies of up to 90%. | 
| Efficient Combination of Deep Learning and Tree-Based Models for Solar Panel Dust Detection [20] | Hybrid Model Deep learning-based feature extraction with Vision Transformer (CNN/ViT) and tree-based classification (RF, XGBoost) | Combining fine-tuning in feature extraction with feature selection for dust detection. | Accuracy: 97% | 
| Solar Panel Dust Detection Using Deep Learning Model [21] | Deep learning-based feature extraction and SVM classification | Feature extraction with VGG, ResNet, DenseNet, MobileNet, Xception, NASNet and binary classification with SVM | Accuracy: 96.5% Loss: 0.083 | 
| An approach based on deep learning methods to detect the condition of solar panels in solar power plants [22] | Histogram Equalization (HE)-based preprocessing technique for enhancing the AI model | The proposed model was implemented in real-time application with an artificial intelligence-based drone. | F1-score: 97% | 
| Deep Learning for Dust Accumulation Analysis on Desert Solar Panels: A CNN-Transformer Approach [23] | CNNs with attention mechanisms to enhance spatial feature extraction. Data augmentation and transfer learning were used to improve generalization | Developed a lightweight fusion network optimized for embedded edge devices, ensuring robust detection across diverse illumination and angle conditions. | Accuracy: 98% | 
| Dust deposition and cleaning effect on PV panel: Experimental approach [24] | The dust densities on PV panels are determined by a physics-informed deep neural network (PIDNN) that integrates measured irradiation, temperature, and pollution rate characteristics with convolutional visual cues | The model provides data-driven feature extraction under physical constraints. | An error rate of less than 3% is achieved in energy efficiency prediction | 
| A Novel Technique for Detecting and Monitoring Dust and Soil on Solar Photovoltaic Panel [25] | Contamination rates are estimated from RGB images by extracting features from the Hue channel of the HSV color space using the Gray-Level Co-occurrence Matrix, followed by classification with a linear model. | Cost-effective dust level detection is achieved using standard camera sensors. | Accuracy: 82% | 
| A new dust detection method for photovoltaic panel surface based on Pytorch and its economic benefit analysis [26] | A specially designed Adam algorithm is used in the ResNet18, VGG16, and MobileNetV2 CNN models | Provides a unified optimization method that integrates both Warmup and cosine annealing strategies into the Adam algorithm. | ResNet-18, VGG-16, and MobileNetV2 | 
| Image Split | Dirty PV Panels | Clean PV Panels | 
|---|---|---|
| Training images | 272 | 401 | 
| Validation images | 34 | 50 | 
| Test images | 34 | 51 | 
| Total images | 340 | 502 | 
| Layer | Input Size | Parameters | Output Size | 
|---|---|---|---|
| Convltn _1 | 227 × 227 × 3 | 11 × 11, 96 kernels, stride = 4 | 55 × 55 × 96 | 
| Max Pooling | 55 × 55 × 96 | 3 × 3, stride = 2 | 27 × 27 × 96 | 
| Convltn _2 | 27 × 27 × 96 | 3 × 3, 256 kernels, pad=2 | 27 × 27 × 256 | 
| Max Pooling | 27 × 27 × 256 | 3 × 3, stride = 2 | 13 × 13 × 256 | 
| Convltn _3 | 13 × 13 v 256 | 3 × 3, 384 kernels, pad = 1 | 13 × 13 × 384 | 
| Convltn_4 | 13 × 13 × 384 | 3 × 3, 384 kernels, pad = 1 | 13 × 13 × 384 | 
| Convltn _5 | 13 × 13 × 384 | 3 × 3, 256 kernels, pad = 1 | 13 × 13 × 256 | 
| Max Pooling | 13 × 13 × 256 | 3 × 3, stride = 2 | 6 × 6 × 256 | 
| FC_1 | 9216 | ReLu | 4096 | 
| FC_2 | 4096 | ReLu | 4096 | 
| FC_3 | 4096 | ReLu | 4096 | 
| Output | 4096 | Softmax | 1000 | 
| Layer | Input Size | Parameters | Output Size | 
|---|---|---|---|
| Convltn_1_1 | 224 × 224 × 3 | 3 × 3, 64 kernels, stride = 1 | 224 × 224 × 64 | 
| Convltn_1_2 | 224 × 224 × 64 | 3 × 3, 64 kernels, stride = 1 | 224 × 224 × 64 | 
| Max Pooling | 224 × 224 × 64 | 2 × 2, stride = 2 | 112 × 112 × 64 | 
| Convltn_2_1 | 112 × 112 × 64 | 3 × 3, 128 kernels, stride = 1 | 112 × 112 × 128 | 
| Convltn_2_2 | 112 × 112 × 128 | 3 × 3, 128 kernels, stride = 1 | 112 × 112 × 128 | 
| Max Pooling | 112 × 112 × 128 | 2 × 2, stride = 2 | 56 × 56 × 128 | 
| Convltn_3_1 | 56 × 56 × 128 | 3 v 3, 256 kernels, stride = 1 | 56 × 56 × 256 | 
| Convltn_3_2 | 56 × 56 × 256 | 3 × 3, 256 kernels, stride = 1 | 56 × 56 × 256 | 
| Convltn_3_3 | 56 × 56 × 256 | 3 × 3, 256 kernels, stride = 1 | 56 × 56 × 256 | 
| Max Pooling | 56 × 56 × 256 | 2 × 2, stride = 2 | 28 × 28 × 256 | 
| Convltn_4_1 | 28 × 28 × 256 | 3 × 3, 512 kernels, stride = 1 | 28 × 28 × 512 | 
| Convltn_4_2 | 28 × 28 × 512 | 3 × 3, 512 kernels, stride = 1 | 28 × 28 × 512 | 
| Convltn_4_3 | 28 × 28 × 512 | 3 × 3, 512 kernels, stride = 1 | 28 × 28 × 512 | 
| Max Pooling | 28 × 28 × 512 | 2 × 2, stride = 2 | 14 × 14 × 512 | 
| Convltn_5_1 | 14 × 14 × 512 | 3 × 3, 512 kernels, stride = 1 | 14 × 14 × 512 | 
| Convltn_5_2 | 14 × 14 × 512 | 3 × 3, 512 kernels, stride = 1 | 14 × 14 × 512 | 
| Convltn_5_3 | 14 × 14 × 512 | 3 × 3, 512 kernels, stride = 1 | 14 × 14 × 512 | 
| Max Pooling | 14 × 14 × 512 | 2 × 2, stride = 2 | 7 × 7 × 512 | 
| FC_1 | 1 × 1 × 25,088 | ReLu | 4096 | 
| FC_2 | 4096 | ReLu | 4096 | 
| FC_3 | 4096 | Softmax | 1000 | 
| Layer | VGG16 | VGG19 | 
|---|---|---|
| Input_Image_Size | 224 × 224 × 3 | 224 × 224 × 3 | 
| Convltn_Layer | 13 | 16 | 
| ReLU | 5 | 18 | 
| Max Pooling | 5 | 5 | 
| FC_ Layer | 3 | 3 | 
| Drop Out | 0.5 | 0.5 | 
| Layer | Input Size | Parameters | Output Size | 
|---|---|---|---|
| Convltn_1_1 | 224 × 224 × 3 | 7 × 7, 64 kernels, stride = 2 | 112 × 112 × 64 | 
| Max Pooling | 112 × 112 × 64 | 3 × 3, stride = 2 | 56 × 56 × 64 | 
| Convltn Block 1 | 56 × 56 × 64 | 28 × 28 × 512 | |
| Convltn Block 2 | 28 × 28 × 512 | 14 × 14 × 1024 | |
| Convltn Block 3 | 14 × 14 × 1024 | 7 × 7 × 1024 | |
| Convltn Block 4 | 7 × 7 × 1024 | 7 × 7 × 2048 | |
| Average Pooling | 7 × 7 × 2048 | 1 × 1 | 7 × 7 × 2048 | 
| FC | 1 × 1 × 51,200 | Softmax | 1000 | 
| Layer | Input Size | Parameters | Output Size | 
|---|---|---|---|
| Convltn_1 | 299 × 299 × 3 | 3 × 3, stride = 2 | 149 × 149 × 32 | 
| Convltn_2 | 149 × 149 × 3 | 3 × 3, stride = 1 | 147 × 147 × 32 | 
| Convolution_3 | 147 × 147 × 32 | 3 × 3, stride = 1 | 147 × 147 × 64 | 
| Pooling | 147 × 147 × 64 | 3 × 3, stride = 2 | 73 × 73 × 64 | 
| Convltn_4 | 73 × 73 × 64 | 3 × 3, stride = 1 | 71 × 71 × 80 | 
| Convltn_5 | 71 × 71 × 80 | 3 × 3, stride = 2 | 35 × 35 × 192 | 
| Convltn_6 | 35 × 35 × 192 | 3 × 3, stride = 1 | 35 × 35 × 288 | 
| 3 × Inception | 35 × 35 × 288 | - | 17 × 17 × 768 | 
| 5 × Inception | 17 × 17 × 768 | - | 8 × 8 × 1280 | 
| 2 × Inception | 8 × 8 × 1280 | - | 8 × 8 × 2048 | 
| Pooling | 8 × 8 × 2048 | 8 × 8 | 1 × 1 × 2048 | 
| Linear | 1 × 1 × 2048 | Logits | 1 × 1 × 1000 | 
| Dense | 1 × 1 × 1000 | Softmax | 1000 | 
| Layer | Input Size | Parameters | Output Size | 
|---|---|---|---|
| Convltn_1 | 224 × 224 × 3 | 3 × 3, 32 kernels, stride = 1 | 224 × 224 × 32 | 
| Max Pooling | 222 × 222 × 32 | 2 × 2, stride = 2 | 111 × 111 × 32 | 
| Convltn_2 | 111 × 111 × 32 | 3 × 3, 64 kernels, stride = 1 | 109 × 109 × 64 | 
| Max Pooling | 109 × 109 × 64 | 2 × 2, stride = 2 | 54 × 54 × 64 | 
| Convltn_3 | 54 × 54 × 64 | 3 v 3, 128 kernels, stride = 1 | 52 × 52 × 128 | 
| Max Pooling | 52 × 52 × 128 | 2 × 2, stride = 2 | 26 × 26 × 128 | 
| FC_1 | 26 × 26 × 128 | - | 86,528 | 
| FC_2 | 1 × 1 × 86,528 | ReLU | 1 × 1 × 128 | 
| Dropout | 1 × 1 × 128 | - | - | 
| FC_3 | 1 × 1 × 128 | Sigmoid | 2 | 
| Metric and Formula | Description | 
|---|---|
| The proportion of instances that the model correctly classifies (including both true positives and true negatives) out of the total number of instances. | |
| It illustrates how many of the predicted positive examples are actually positive. | |
| It illustrates how many of the true positives are correctly predicted by the model. | |
| It is the harmonic mean of precision and recall. It is useful in an imbalanced dataset. | 
| Parameter | Value | 
|---|---|
| Image Size | 224 × 224 × 3 | 
| Batch Size | 32 | 
| Learning Rate | 0.0001 | 
| Epochs | 50 | 
| Optimizer | Adam | 
| Loss Function | Binary Cross-Entropy | 
| Model | Reference | Accuracy (%) | Trainable Parameters | 
|---|---|---|---|
| AlexNet | Krizhevsky et al. [40] | 92.94 | 62 M | 
| VGG16 | Simonyan & Zisserman [42] | 95.25 | 138 M | 
| VGG19 | Simonyan & Zisserman [42] | 94.12 | 143.7 M | 
| ResNet50 | He et al. [45] | 80.00 | 60 M | 
| Inception V3 | Szegedy et al. [47] | 98.80 | 23 M | 
| Proposed (SolPowNet) | This paper | 98.82 | 11.17 M | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alçin, Ö.F.; Aslan, M.; Ari, A. SolPowNet: Dust Detection on Photovoltaic Panels Using Convolutional Neural Networks. Electronics 2025, 14, 4230. https://doi.org/10.3390/electronics14214230
Alçin ÖF, Aslan M, Ari A. SolPowNet: Dust Detection on Photovoltaic Panels Using Convolutional Neural Networks. Electronics. 2025; 14(21):4230. https://doi.org/10.3390/electronics14214230
Chicago/Turabian StyleAlçin, Ömer Faruk, Muzaffer Aslan, and Ali Ari. 2025. "SolPowNet: Dust Detection on Photovoltaic Panels Using Convolutional Neural Networks" Electronics 14, no. 21: 4230. https://doi.org/10.3390/electronics14214230
APA StyleAlçin, Ö. F., Aslan, M., & Ari, A. (2025). SolPowNet: Dust Detection on Photovoltaic Panels Using Convolutional Neural Networks. Electronics, 14(21), 4230. https://doi.org/10.3390/electronics14214230
 
        
 
                                                
 
       