Exploring the Role of AI and Software Solutions in Shaping Tourism Outcomes: A Factor, Neural Network, and Cluster Analysis Across Europe
Abstract
1. Introduction
2. Literature Review and Hypothesis Development
2.1. Artificial Intelligence and Systemic Transformations in European Tourism
2.2. AI, CRM, and Performance in the Accommodation Sector
2.3. Digitalization, Performance, and Tourism Clustering in the EU
3. Materials and Methods
3.1. Research Design
3.2. Selected Variables
3.3. Methods
4. Results
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Further Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
AITH | ERP | CRM | BI | NORB | NSTA | |
---|---|---|---|---|---|---|
Czechia | 2.63 | 18.43 | 17.27 | 6.29 | 43.4 | 5157.45 |
Germany | 5.38 | 30.49 | 35.63 | 8.35 | 60.17 | 5190.65 |
Luxembourg | 4.87 | 21.29 | 22.77 | 9.48 | 42.74 | 5275.28 |
Estonia | 1.64 | 32.03 | 30.58 | 13.78 | 48 | 4667.21 |
Bulgaria | 0.76 | 19.09 | 14.11 | 6.90 | 55.9 | 4166.6 |
Finland | 2.46 | 36.45 | 61.76 | 47.86 | 51.8 | 4103.56 |
Belgium | 7.98 | 27.36 | 26.48 | 22.53 | 59.57 | 3806.3 |
Lithuania | 0.55 | 31.47 | 26.57 | 8.39 | 57.2 | 2965.7 |
Hungary | 2.46 | 38.62 | 30.01 | 8.54 | 49.2 | 3175.95 |
Poland | 1.65 | 30.40 | 32.12 | 8.33 | 50.7 | 2524.86 |
Slovakia | 2.31 | 16.61 | 12.19 | 6.83 | 42.95 | 2645.13 |
Latvia | 1.01 | 41.45 | 18.91 | 9.78 | 39.9 | 2321.21 |
Romania | 0.06 | 11.90 | 8.54 | 1.35 | 29.14 | 1532.73 |
Cluster A means | 2.60 | 27.35 | 25.92 | 12.19 | 48.51 | 3656.36 |
Netherlands | 5.91 | 34.34 | 46.28 | 21.28 | 65.5 | 7987.77 |
Portugal | 5.26 | 39.45 | 34.40 | 27.02 | 61.6 | 8071.68 |
Italy | 3.99 | 38.30 | 42.47 | 30.68 | 54.5 | 7579.51 |
Slovenia | 6.53 | 20.08 | 13.97 | 4.41 | 47.74 | 7606.53 |
Ireland | 2.68 | 32.27 | 41.10 | 25.65 | 76 | 7708.8 |
Denmark | 6.60 | 31.58 | 28.79 | 23.39 | 60 | 6564.7 |
France | 2.47 | 43.94 | 35.28 | 10.52 | 62.2 | 6741.22 |
Sweden | 3.18 | 54.70 | 39.37 | 17.67 | 57.47 | 6072.88 |
Spain | 6.38 | 60.51 | 44.35 | 25.59 | 68.17 | 10,085.97 |
Cluster B means | 4.78 | 39.46 | 36.22 | 20.69 | 61.46 | 7602.12 |
Greece | 1.33 | 41.01 | 25.64 | 8.88 | 54.3 | 14,135.79 |
Austria | 3.63 | 23.50 | 35.49 | 19.37 | 54 | 14,032.85 |
Cyprus | 1.22 | 54.54 | 40.51 | 25.14 | 69.2 | 16,474.96 |
Malta | 7.55 | 58.52 | 56.51 | 26.43 | 72.6 | 18,249.74 |
Croatia | 5.80 | 25.59 | 23.05 | 26.64 | 57.9 | 23,979.15 |
Cluster C means | 3.91 | 40.63 | 36.24 | 21.29 | 61.60 | 17,374.50 |
Eu mean | 3.57 | 33.85 | 31.26 | 16.71 | 55.25 | 7512.01 |
References
- Elkhwesky, Z.; El Manzani, Y.; Salem, I.E. Driving Hospitality and Tourism to Foster Sustainable Innovation: A Systematic Review of COVID-19-Related Studies and Practical Implications in the Digital Era. Tour. Hosp. Res. 2022, 24, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Streimikiene, D.; Svagzdiene, B.; Jasinskas, E.; Simanavicius, A. Sustainable tourism development and competitiveness: The systematic literature review. Sustain. Dev. 2021, 29, 259–271. [Google Scholar] [CrossRef]
- Anagnostou, A.; Ekonomou, G.; Kallioras, D. The nexus of tourism spending with economic performance: A panel data analysis for the Eurozone area. Geogr. Pannonica 2021, 25, 53–62. [Google Scholar] [CrossRef]
- Citak, J.; Owoc, M.; Weichbroth, P. A note on the applications of artificial intelligence in the hospitality industry: Preliminary results of a survey. Procedia Comput. Sci. 2021, 192, 4552–4559. [Google Scholar] [CrossRef]
- Gajdošík, T.; Marciš, M. Artificial Intelligence Tools for Smart Tourism Development. In Artificial Intelligence Methods in Intelligent Algorithms; Silhavy, R., Ed.; Springer: Cham, Germany, 2019; Volume 985, pp. 392–402. [Google Scholar] [CrossRef]
- García-Madurga, M.Á.; Grilló-Méndez, A.J. Artificial Intelligence in the Tourism Industry: An Overview of Reviews. Adm. Sci. 2023, 13, 172. [Google Scholar] [CrossRef]
- Tussyadiah, I. A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism. Ann. Tour. Res. 2020, 81, 102883. [Google Scholar] [CrossRef]
- Ivanov, S.; Gretzel, U.; Berezina, K.; Sigala, M.; Webster, C. Progress on Robotics in Hospitality and Tourism: A Review of the Literature. J. Hosp. Tour. Technol. 2019, 10, 489–521. [Google Scholar] [CrossRef]
- Buhalis, D.; Amaranggana, A. Smart tourism destinations enhancing tourism experience through personalisation of services. In ICT in Tourism 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 377–389. [Google Scholar]
- Grundner, L.; Neuhofer, B. The bright and dark sides of artificial intelligence: A futures perspective on tourist destination experiences. J. Destin. Mark. Manag. 2021, 19, 100511. [Google Scholar] [CrossRef]
- Agiropoulos, C.; Chen, J.M.; Galanos, G.; Poufinas, T. Exploring Regional Determinants of Tourism Success in the Eurozone: An Unsupervised Machine Learning Approach. Eng. Proc. 2024, 68, 53. [Google Scholar] [CrossRef]
- Samara, D.; Magnisalis, I.; Peristeras, V. Artificial Intelligence and Big Data in Tourism: A Systematic Literature Review. J. Hosp. Tour. Technol. 2020, 11, 343–367. [Google Scholar] [CrossRef]
- Gaur, L.; Afaq, A.; Singh, G.; Dwivedi, Y.K. Role of Artificial Intelligence and Robotics to Foster the Touchless Travel during a Pandemic: A Review and Research Agenda. Int. J. Contemp. Hosp. Manag. 2021, 33, 4079–4098. [Google Scholar] [CrossRef]
- To, W.M.; Yu, B.T.W. Artificial Intelligence Research in Tourism and Hospitality Journals: Trends, Emerging Themes, and the Rise of Generative AI. Tour. Hosp. 2025, 6, 63. [Google Scholar] [CrossRef]
- Ansari, N.; Tyagi, S.; Mehrwal, N.; Rastogi, N.; Chibber, S.; Memoria, M.; Kumar, R.; Gupta, A. A critical insight into the impact of technology in transformation of tourist business into smart tourism. In Proceedings of the 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), Faridabad, India, 26–27 May 2022; pp. 832–837. [Google Scholar] [CrossRef]
- Siddik, A.B.; Forid, M.S.; Yong, L.; Du, A.M.; Goodell, J.W. Artificial intelligence as a catalyst for sustainable tourism growth and economic cycles. Technol. Forecast. Soc. Change 2025, 210, 123875. [Google Scholar] [CrossRef]
- Antonakakis, N.; Dragouni, M.; Eeckels, B.; Filis, G. The tourism and economic growth enigma: Examining an ambiguous relationship through multiple prisms. J. Travel Res. 2017, 58, 3–24. [Google Scholar] [CrossRef]
- Fawaz, F.; Rahnama, M.; Stout, B. An empirical refinement of the relationship between tourism and economic growth. Anatolia 2014, 25, 352–363. [Google Scholar] [CrossRef]
- Badulescu, A.; Badulescu, D.; Simut, R.; Dzitac, S. Tourism–economic growth nexus. The case of Romania. Technol. Econ. Dev. Econ. 2020, 26, 867–884. [Google Scholar] [CrossRef]
- Chi, J. Tourism development and income inequality in OECD countries: New insights from method of moments quantile regression. Tour. Econ. 2023, 30, 767–784. [Google Scholar] [CrossRef]
- Raifu, I.A.; Afolabi, J.A. Does rising inflation affect the tourism industry? Evidence from Nigeria. J. Policy Res. Tour. Leis. Events 2024, 1–17. [Google Scholar] [CrossRef]
- Ağazade, S.; Karasakaloğlu, B. Foreign direct investments and tourism: A cross-sectional analysis. Tour. Plan. Dev. 2023, 20, 790–804. [Google Scholar] [CrossRef]
- Muyibul, Z.; Tan, X.; Tuniyazi, J.; Du, R. Relationships between Tourism, Urbanization and Ecosystem Service Value in the Cities of Xinjiang in Northwest China. Sustainability 2023, 15, 4190. [Google Scholar] [CrossRef]
- Samala, N.; Katkam, B.S.; Bellamkonda, R.S.; Rodriguez, R.V. Impact of AI and robotics in the tourism sector: A critical insight. J. Tour. Futures 2022, 8, 73–87. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, Y. A Study on the Integrated Development of Artificial Intelligence and Tourism from the Perspective of Smart Tourism. J. Phys. Conf. Ser. 2021, 1852, 032016. [Google Scholar] [CrossRef]
- Marasco, A.; Buonincontri, P.; van Niekerk, M.; Orlowski, M.; Okumus, F. Exploring the role of next-generation virtual technologies in destination marketing. J. Destin. Mark. Manag. 2018, 9, 138–148. [Google Scholar] [CrossRef]
- Reis, J.; Melão, N.; Salvadorinho, J.; Soares, B.; Rosete, A. Service robots in the hospitality industry: The case of Henn-na hotel, Japan. Technol. Soc. 2020, 63, 101423. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B. Adoption of AI-Based Chatbots for Hospitality and Tourism. Int. J. Contemp. Hosp. Manag. 2020, 32, 3199–3226. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, P.J.; Lew, A.A. From High-Touch to High-Tech: COVID-19 Drives Robotics Adoption. Tour. Geogr. 2020, 22, 724–734. [Google Scholar] [CrossRef]
- Cain, L.N.; Thomas, J.H.; Alonso, M., Jr. From Sci-Fi to Sci-Fact: The State of Robotics and AI in the Hospitality Industry. J. Hosp. Tour. Technol. 2019, 10, 624–650. [Google Scholar] [CrossRef]
- Yang, J.; Chew, E. A Systematic Review for Service Humanoid Robotics Model in Hospitality. Int. J. Soc. Robot. 2021, 13, 1397–1410. [Google Scholar] [CrossRef]
- Knani, M.; Echchakoui, S.; Ladhari, R. Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. Int. J. Hosp. Manag. 2022, 107, 103317. [Google Scholar] [CrossRef]
- Gursoy, D.; Li, Y.; Song, H. ChatGPT and the Hospitality and Tourism Industry: An Overview of Current Trends and Future Research Directions. J. Hosp. Mark. Manag. 2023, 32, 579–592. [Google Scholar] [CrossRef]
- Carvalho, I.; Ivanov, S. ChatGPT for Tourism: Applications, Benefits and Risks. Tour. Rev. 2024, 79, 290–303. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Pandey, N.; Currie, W.; Micu, A. Leveraging ChatGPT and Other Generative Artificial Intelligence (AI)-Based Applications in the Hospitality and Tourism Industry: Practices, Challenges and Research Agenda. Int. J. Contemp. Hosp. Manag. 2024, 36, 1–12. [Google Scholar] [CrossRef]
- Lalicic, L.; Weismayer, C. Consumers’ reasons and perceived value co-creation of using artificial intelligence-enabled travel service agents. J. Bus. Res. 2021, 129, 891–901. [Google Scholar] [CrossRef]
- Sharma, K.; Dhir, S.; Ongsakul, V. Artificial intelligence and hospitality industry: Systematic review using TCCM and bibliometric analysis. J. Int. Bus. Entrep. Dev. 2022, 14, 48–71. [Google Scholar] [CrossRef]
- Song, B.; Zhang, M.; Wu, P. Driven by technology or sociality? Use intention of service robots in hospitality from the human-robot interaction perspective. Int. J. Hosp. Manag. 2022, 106, 103278. [Google Scholar] [CrossRef]
- Gretzel, U. Intelligent systems in tourism: A social science perspective. Ann. Tour. Res. 2011, 38, 757–779. [Google Scholar] [CrossRef]
- Yadav, J.K.; Verma, D.C.; Jangirala, S.; Srivastava, S.K. An IAD type framework for Blockchain enabled smart tourism ecosystem. J. High Technol. Manag. Res. 2021, 32, 100404. [Google Scholar] [CrossRef]
- Bartneck, C.; Yogeeswaran, K.; Sibley, C. Personality and demographic correlates of support for regulating artificial intelligence. AI Ethics 2024, 4, 419–426. [Google Scholar] [CrossRef]
- Song, H.; Qiu, R.T.R.; Park, J. A Review of Research on Tourism Demand Forecasting. Ann. Tour. Res. 2019, 75, 338–362. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Wang, Y.; Pan, C. Hot Topics and Emerging Trends in Tourism Forecasting Research: A Scientometric Review. Tour. Econ. 2019, 25, 448–468. [Google Scholar] [CrossRef]
- Chang, Y.C.; Ku, C.H.; Chen, C.H. Using Deep Learning and Visual Analytics to Explore Hotel Reviews and Responses. Tour. Manag. 2020, 80, 104129. [Google Scholar] [CrossRef]
- Doborjeh, Z.; Hemmington, N.; Doborjeh, M.; Kasabov, N. Artificial Intelligence: A Systematic Review of Methods and Applications in Hospitality and Tourism. Int. J. Contemp. Hosp. Manag. 2022, 34, 1154–1176. [Google Scholar] [CrossRef]
- Li, M.; Yin, D.; Qiu, H.; Bai, B. A Systematic Review of AI Technology-Based Service Encounters: Implications for Hospitality and Tourism Operations. Int. J. Hosp. Manag. 2021, 95, 102930. [Google Scholar] [CrossRef]
- Li, X.; Law, R.; Xie, G.; Wang, S. Review of Tourism Forecasting Research with Internet Data. Tour. Manag. 2021, 83, 104245. [Google Scholar] [CrossRef]
- Kirtil, I.G.; Askun, V. Artificial Intelligence in Tourism: A Review and Bibliometrics Research. Adv. Hosp. Tour. Res. 2021, 9, 205–233. [Google Scholar] [CrossRef]
- Hall, C.M. A typology of governance and its implications for tourism policy analysis. In Tourism Governance; Routledge: London, UK, 2013; pp. 27–47. [Google Scholar]
- Edgell, D.L.; Swanson, J.; Allen, M.D.; Smith, G. Tourism Policy and Planning: Yesterday, Today, and Tomorrow; Routledge: London, UK, 2008. [Google Scholar]
- Antonakakis, N.; Dragouni, M.; Filis, G. How strong is the linkage between tourism and economic growth in Europe? Econ. Model. 2015, 44, 142–155. [Google Scholar] [CrossRef]
- Miller, G.; Rathouse, K.; Scarles, C.; Holmes, K.; Tribe, J. Public understanding of sustainable tourism. Ann. Tour. Res. 2010, 37, 627–645. [Google Scholar] [CrossRef]
- Novelli, M.; Schmitz, B.; Spencer, T. Networks, clusters and innovation in tourism: A UK experience. Tour. Manag. 2006, 27, 1141–1152. [Google Scholar] [CrossRef]
- Dwyer, L.; Kim, C. Destination competitiveness: Determinants and indicators. Curr. Issues Tour. 2003, 6, 369–414. [Google Scholar] [CrossRef]
- Dolnicar, S. A review of data-driven market segmentation in tourism. J. Travel Tour. Mark. 2002, 12, 1–22. [Google Scholar] [CrossRef]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent Dirichlet allocation. Tour. Manag. 2017, 59, 467–483. [Google Scholar] [CrossRef]
- Eurostat. Artificial Intelligence by NACE Rev. 2 Activity. Accommodation. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_ain2__custom_17394780/default/table?lang=en (accessed on 24 August 2025).
- Eurostat. Integration of Internal Processes by NACE Rev. 2 Activity. Accommodation. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_iipn2__custom_17401866/default/table?lang=en (accessed on 24 August 2025).
- Eurostat. Net Occupancy Rate of Bed-Places and Bedrooms in Hotels and Similar Accommodation (NACE Rev. 2 Activity I55.1). Available online: https://ec.europa.eu/eurostat/databrowser/view/tour_occ_anor2__custom_17408896/default/table?lang=en (accessed on 24 August 2025).
- Eurostat. Nights Spent at Tourist Accommodation Establishments. Available online: https://ec.europa.eu/eurostat/databrowser/view/tour_occ_ninat__custom_17394741/default/table?lang=en (accessed on 24 August 2025).
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 6th ed.; SAGE Publications: New York, NY, USA, 2024. [Google Scholar]
- Aldrich, J.O. Using IBM® SPSS® Statistics: An Interactive Hands-On Approach, 3rd ed.; SAGE Publications: New York, NY, USA, 2018. [Google Scholar]
- Law, R. Backpropagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tour. Manag. 2000, 21, 241–246. [Google Scholar] [CrossRef]
- Claveria, O.; Monte, E.; Torra, S. Tourism demand forecasting with neural networks models: Different ways of treating information. Int. J. Tour. Res. 2016, 17, 492–500. [Google Scholar] [CrossRef]
- Penn State, Eberly College of Science. Agglomerative Hierarchical Clustering. Available online: https://online.stat.psu.edu/stat505/lesson/14/14.4 (accessed on 6 September 2025).
- Hu, Y.; Li, K.; Meng, A. Agglomerative Hierarchical Clustering Using Ward Linkage. Available online: https://jbhender.github.io/Stats506/F18/GP/Group10.html (accessed on 6 September 2025).
- Figini, P.; Patuelli, R. Estimating the economic impact of tourism in the EU: Review and computation. J. Travel Res. 2021, 61, 1409–1423. [Google Scholar] [CrossRef]
- Rahmadian, E.; Feitosa, D.; Zwitter, A. A Systematic Literature Review on the Use of Big Data for Sustainable Tourism. Curr. Issues Tour. 2022, 25, 1711–1730. [Google Scholar] [CrossRef]
- Lv, H.; Shi, S.; Gursoy, D. A Look Back and a Leap Forward: A Review and Synthesis of Big Data and Artificial Intelligence Literature in Hospitality and Tourism. J. Hosp. Mark. Manag. 2022, 31, 145–175. [Google Scholar] [CrossRef]
- Jiao, E.X.; Chen, J.L. Tourism Forecasting: A Review of Methodological Developments over the Last Decade. Tour. Econ. 2019, 25, 469–492. [Google Scholar] [CrossRef]
- Osei, B.A.; Ragavan, N.A.; Mensah, H.K. Prospects of the Fourth Industrial Revolution for the Hospitality Industry: A Literature Review. J. Hosp. Tour. Technol. 2020, 11, 479–494. [Google Scholar] [CrossRef]
- Panzera, E.; de Graaff, T.; de Groot, H.L. European cultural heritage and tourism flows: The magnetic role of superstar World Heritage Sites. Pap. Reg. Sci. 2021, 100, 101–122. [Google Scholar] [CrossRef]
- Ivanov, S.; Soliman, M. Game of Algorithms: ChatGPT Implications for the Future of Tourism Education and Research. J. Tour. Futures 2023, 9, 214–221. [Google Scholar] [CrossRef]
Variable | Dataset | Measures | References |
---|---|---|---|
AITH | Enterprises use at least one of the AI technologies | Percentage of enterprises | [57] |
ERP | Enterprises that have an ERP software package to share information between different functional areas | Percentage of enterprises | [58] |
CRM | Enterprises using Customer Relationship Management (CRM) software | Percentage of enterprises | [58] |
BI | Enterprises using Business Intelligence (BI) software | Percentage of enterprises | [58] |
NORB | Net occupancy rate of bed-places in hotels and similar accommodation | Percentage | [59] |
NSTA | Nights spent at tourist accommodation establishments | Nights spent per thousand inhabitants | [60] |
AITH | ERP | CRM | BI | NORB | NSTA | ||
---|---|---|---|---|---|---|---|
Correlation | AITH | 1.000 | 0.167 | 0.296 | 0.377 | 0.430 | 0.357 |
ERP | 0.167 | 1.000 | 0.700 | 0.458 | 0.620 | 0.358 | |
CRM | 0.296 | 0.700 | 1.000 | 0.788 | 0.673 | 0.307 | |
BI | 0.377 | 0.458 | 0.788 | 1.000 | 0.546 | 0.397 | |
NORB | 0.430 | 0.620 | 0.673 | 0.546 | 1.000 | 0.510 | |
NSTA | 0.357 | 0.358 | 0.307 | 0.397 | 0.510 | 1.000 | |
Sig. (1-tailed) | AITH | 0.203 | 0.067 | 0.026 | 0.013 | 0.034 | |
ERP | 0.203 | 0.000 | 0.008 | 0.000 | 0.033 | ||
CRM | 0.067 | 0.000 | 0.000 | 0.000 | 0.060 | ||
BI | 0.026 | 0.008 | 0.000 | 0.002 | 0.020 | ||
NORB | 0.013 | 0.000 | 0.000 | 0.002 | 0.003 | ||
NSTA | 0.034 | 0.033 | 0.060 | 0.020 | 0.003 | ||
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.719 | ||||||
Bartlett’s Test of Sphericity | Approx. Chi-Square | 71.873 | |||||
df | 15 | ||||||
Sig. | 0.000 |
Initial | Extraction | Factor1 | |
---|---|---|---|
AITH | 0.260 | 0.186 | 0.432 |
ERP | 0.579 | 0.486 | 0.697 |
CRM | 0.798 | 0.769 | 0.877 |
BI | 0.685 | 0.587 | 0.766 |
NORB | 0.608 | 0.677 | 0.823 |
NSTA | 0.354 | 0.267 | 0.516 |
Parameter Estimates | ||||||
---|---|---|---|---|---|---|
Hidden Layer 1 | Output Layer | Importance | Normalized Importance | |||
H (1:1) | NORB | NSTA | ||||
Input Layer | (Bias) | 0.544 | ||||
AITH | 0.970 | 0.220 | 51.9% | |||
ERP | 1.094 | 0.249 | 58.6% | |||
CRM | 1.857 | 0.424 | 100.0% | |||
BI | 0.471 | 0.107 | 25.1% | |||
Hidden Layer 1 | (Bias) | −0.908 | −1.631 | |||
H (1:1) | 2.275 | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vărzaru, A.A.; Bocean, C.G.; Tudor, S.; Bratu, R.-Ș.; Cârstina, S. Exploring the Role of AI and Software Solutions in Shaping Tourism Outcomes: A Factor, Neural Network, and Cluster Analysis Across Europe. Electronics 2025, 14, 4004. https://doi.org/10.3390/electronics14204004
Vărzaru AA, Bocean CG, Tudor S, Bratu R-Ș, Cârstina S. Exploring the Role of AI and Software Solutions in Shaping Tourism Outcomes: A Factor, Neural Network, and Cluster Analysis Across Europe. Electronics. 2025; 14(20):4004. https://doi.org/10.3390/electronics14204004
Chicago/Turabian StyleVărzaru, Anca Antoaneta, Claudiu George Bocean, Sorin Tudor, Răducu-Ștefan Bratu, and Silviu Cârstina. 2025. "Exploring the Role of AI and Software Solutions in Shaping Tourism Outcomes: A Factor, Neural Network, and Cluster Analysis Across Europe" Electronics 14, no. 20: 4004. https://doi.org/10.3390/electronics14204004
APA StyleVărzaru, A. A., Bocean, C. G., Tudor, S., Bratu, R.-Ș., & Cârstina, S. (2025). Exploring the Role of AI and Software Solutions in Shaping Tourism Outcomes: A Factor, Neural Network, and Cluster Analysis Across Europe. Electronics, 14(20), 4004. https://doi.org/10.3390/electronics14204004