A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications
Abstract
:1. Introduction
2. Antenna Structure and Process
3. Results and Discussion
3.1. Simulation Results
3.2. Measurement Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sabban, A. Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal Fract 2024, 8, 100. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Cui, Z.; Yue, T. Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, F.; Liu, Z. Ultrathin and flexible reflective polarization converter based on metasurfaces with overlapped arrays. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2512–2516. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, G.D.; Ran, X.Y.; Niu, R.R. A Flexible Multiband Dendritic Structure Fractal Antenna for 4G/5G/WLAN/Bluetooth Applications. Int. J. RF Microw. Comput. Aided Eng. 2023, 2023, 6496757. [Google Scholar] [CrossRef]
- Lozano, J.I.; Panduro, M.A.; Méndez-Alonzo, R.; Alonso-Arevalo, M.A.; Conte, R.; Reyna, A. Plant Foliar Geometry as a Biomimetic Template for Antenna Design. Biomimetics 2023, 8, 531. [Google Scholar] [CrossRef]
- Ran, X.Y.; Yu, Z.; Xie, T.Y. Design of a Dual-Band Binary Branch Fractal Bionic Antenna for Mobile Terminal. Int. J. Antennas Propag. 2020, 2020, 6109093. [Google Scholar]
- Yu, Z.; Lin, Z.; Zhang, G.; Li, Y.; Ran, X. A novel Chrysanthemum-like fractal structure multi-band antenna for mobile terminals. Int. J. RF Microw. Comput. -Aided Eng. 2023, 2023, 1102668. [Google Scholar] [CrossRef]
- Zhang, H.M. Conception and design of ginkgo leaf bionic antenna. Xinjiang Norm. Univ. News 2012, 33, 33–39. [Google Scholar]
- Wang, L.; Yu, J.; Xie, T.; Yu, Z.; Liang, B.; Xu, X. The design of a multi-band bionic antenna for mobile terminals. Int. J. RF Microw. Comput. -Aided Eng. 2021, 31, e22620. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Z.; Ran, X.; Li, Y.; Liang, B. A novel pane structure multiband microstrip antenna for 2G/3G/4G/5G/WLAN/navigation applications. Int. J. Antennas Propag. 2021, 2021, 5567417. [Google Scholar] [CrossRef]
- Aras, U.; Delwar, T.S.; Durgaprasadarao, P.; Sundar, P.S.; Ahammad, S.H.; Eid, M.M.A.; Lee, Y.; Zaki Rashed, A.N.; Ryu, J.-Y. Dual Features, Compact Dimensions and X-Band Applications for the Design and Fabrication of Annular Circular Ring-Based Crescent-Moon-Shaped Microstrip Patch Antenna. Micromachines 2024, 15, 809. [Google Scholar] [CrossRef]
- Hasan, M.N.; Chu, S.; Bashir, S. A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications. Microw. Opt. Technol. Lett. 2019, 61, 2141–2149. [Google Scholar] [CrossRef]
- Du, C.; Yang, Z.; Zhong, S. A compact coplanar waveguide-fed band-notched four-port flexible ultra-wide band-multi-input-multi-output slot antenna for wireless body area network and internet of things applications. Int. J. RF Microw. Comput. Aided Eng. 2022, 32, e23289. [Google Scholar] [CrossRef]
- Goswami, C.; Ghatak, R.; Poddar, D.R. Multi-band bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators. IET Microw. Antennas Propag. 2018, 12, 1719–1727. [Google Scholar] [CrossRef]
- Xie, T.; Yu, J.; Lin, Z.; Li, Y.; Zhang, G.; Yu, Z. A Novel Dual-Band “C+O” Structure Antenna. Int. J. Antennas Propag. 2021, 2021, 7974349. [Google Scholar] [CrossRef]
- Fertas, F.; Fertas, K.; Denidni, T.A.; Challal, M. Design of miniaturized tri-band antenna based on differential evolution algorithm. Microw. Opt. Technol. Lett. 2022, 65, 930–935. [Google Scholar] [CrossRef]
- Faisal, F.; Amin, Y.; Cho, Y. Compact and flexible novel wideband flower-shaped CPW-fed antennas for high data wireless applications. IEEE Trans. Antennas Propag. 2019, 67, 4184–4188. [Google Scholar] [CrossRef]
- Bui, D.H.N.; Vuong, T.P.; Benech, P.; Verdier, J.; Allard, B. Gain enhancement of suspended miniaturized antenna on high-loss paper substrate. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; IEEE: Washington, DC, USA, 2017; pp. 2163–2164. [Google Scholar]
- Jiang, W.; Gong, S.; Hong, T.; Mu, X. Printed L-band monopole antenna with a bionical structure. Microw. Opt. Technol. Lett. 2011, 53, 1004–1006. [Google Scholar] [CrossRef]
- Jabbar, A.; Arif, A.; Zubair, M.; Riaz, K.; Mehmood, M.Q. A Low-cost Photopaper Based Wideband Wearable Antenna for WBAN Applications. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 942–945. [Google Scholar]
- Jabbar, A. A photopaper-based low-cost, wideband wearable antenna for wireless body area network applications. IET Microwaves. Antennas Propag. 2022, 16, 962–970. [Google Scholar]
Dimensions Parameters | Unit (mm) | Dimensions Parameters | Unit (mm) |
---|---|---|---|
W | 40 | S1 | 0.5 |
L | 50 | S2 | 0.4 |
L1 | 23 | S3 | 0.6 |
L2 | 7 | a | 7.3 |
L3 | 9 | b | 14.3 |
L4 | 18.5 | h | 10 |
No. | Bandwidth (Simulation) | Application Bands Covered |
---|---|---|
1 | 1.29–1.70 GHz (27%) | 4G LTE (1.447–1.467 GHz) GPS L1 (1.574–1.576 GHz) BeiDou BD2 B1(1.559–1.563 GHz) |
2 | 3.34–3.66 GHz (9%) | TDD (3.4–3.6 GHz) WIMAX (3.3–3.8 GHz) 5G n77 (3.3–4.1 GHz) 5G n88 (3.3–3.8 GHz) |
3 | 5.05–5.92 GHz (16%) | WLAN (802.11 a/n: 5.15–5.35 GHz, 5.725–5.825 GHz) |
Ref. | Dimensions (mm3) | Operating Bands (GHz) | Substrate | Gain | Flexible | FBW (%) |
---|---|---|---|---|---|---|
[17] | 20× 28 × 0.025 | 3.43–6.29 | Polyamide | 3.7 | Yes | 58.84% |
[7] | 41 × 29 × 1.6 | 1.51–2.31 3.32–3.8 4.59–5.2 | FR4 | 2.41–3.91 | No | 64.7% 33.9% 13.4% |
[6] | 50 × 40 × 1.6 | 0.79–3.18 3.29–3.98 4.98–7.62 | FR4 | 3.45 | No | 117.1% 18.9% 41.9% |
[18] | 60 × 55 × 0.23 | 1.6–2 | Paper | 5.3 | Yes | —— |
[19] | 70 × 70 × 1.5 | 1.3–1.8 | FR4 | —— | No | 32.3% |
[12] | 40 × 40 × 1.52 | 3.18–11.50 | Taconic RF-30 | —— | —— | —— |
[20] | 40 × 28 × 0.27 | 2.36–2.48 | Photopaper | 1.61 | Yes | 86% |
[21] | 40 × 30 × 0.27 | 2.3–5.3 | Photopaper | 1.91–3.48 | Yes | 84.35% |
This work | 40 × 50 × 0.1 | 1.29–1.75 3.11–3.65 5.09–5.87 | Polyimide | 3.3 | Yes | 27% 9% 16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Wang, F.; Zhang, R.; Niu, R.; Chang, Y.; Ran, X.; Sun, R.; Zhang, G.; Lu, Z. A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications. Electronics 2025, 14, 253. https://doi.org/10.3390/electronics14020253
Yu Z, Wang F, Zhang R, Niu R, Chang Y, Ran X, Sun R, Zhang G, Lu Z. A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications. Electronics. 2025; 14(2):253. https://doi.org/10.3390/electronics14020253
Chicago/Turabian StyleYu, Zhen, Feng Wang, Ruixin Zhang, Ruirong Niu, Yi Chang, Xiaoying Ran, Runzhi Sun, Guodong Zhang, and Zewei Lu. 2025. "A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications" Electronics 14, no. 2: 253. https://doi.org/10.3390/electronics14020253
APA StyleYu, Z., Wang, F., Zhang, R., Niu, R., Chang, Y., Ran, X., Sun, R., Zhang, G., & Lu, Z. (2025). A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications. Electronics, 14(2), 253. https://doi.org/10.3390/electronics14020253