A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications
Abstract
1. Introduction
2. Antenna Structure and Process
3. Results and Discussion
3.1. Simulation Results
3.2. Measurement Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sabban, A. Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal Fract 2024, 8, 100. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Cui, Z.; Yue, T. Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, F.; Liu, Z. Ultrathin and flexible reflective polarization converter based on metasurfaces with overlapped arrays. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2512–2516. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, G.D.; Ran, X.Y.; Niu, R.R. A Flexible Multiband Dendritic Structure Fractal Antenna for 4G/5G/WLAN/Bluetooth Applications. Int. J. RF Microw. Comput. Aided Eng. 2023, 2023, 6496757. [Google Scholar] [CrossRef]
- Lozano, J.I.; Panduro, M.A.; Méndez-Alonzo, R.; Alonso-Arevalo, M.A.; Conte, R.; Reyna, A. Plant Foliar Geometry as a Biomimetic Template for Antenna Design. Biomimetics 2023, 8, 531. [Google Scholar] [CrossRef]
- Ran, X.Y.; Yu, Z.; Xie, T.Y. Design of a Dual-Band Binary Branch Fractal Bionic Antenna for Mobile Terminal. Int. J. Antennas Propag. 2020, 2020, 6109093. [Google Scholar]
- Yu, Z.; Lin, Z.; Zhang, G.; Li, Y.; Ran, X. A novel Chrysanthemum-like fractal structure multi-band antenna for mobile terminals. Int. J. RF Microw. Comput. -Aided Eng. 2023, 2023, 1102668. [Google Scholar] [CrossRef]
- Zhang, H.M. Conception and design of ginkgo leaf bionic antenna. Xinjiang Norm. Univ. News 2012, 33, 33–39. [Google Scholar]
- Wang, L.; Yu, J.; Xie, T.; Yu, Z.; Liang, B.; Xu, X. The design of a multi-band bionic antenna for mobile terminals. Int. J. RF Microw. Comput. -Aided Eng. 2021, 31, e22620. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Z.; Ran, X.; Li, Y.; Liang, B. A novel pane structure multiband microstrip antenna for 2G/3G/4G/5G/WLAN/navigation applications. Int. J. Antennas Propag. 2021, 2021, 5567417. [Google Scholar] [CrossRef]
- Aras, U.; Delwar, T.S.; Durgaprasadarao, P.; Sundar, P.S.; Ahammad, S.H.; Eid, M.M.A.; Lee, Y.; Zaki Rashed, A.N.; Ryu, J.-Y. Dual Features, Compact Dimensions and X-Band Applications for the Design and Fabrication of Annular Circular Ring-Based Crescent-Moon-Shaped Microstrip Patch Antenna. Micromachines 2024, 15, 809. [Google Scholar] [CrossRef]
- Hasan, M.N.; Chu, S.; Bashir, S. A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications. Microw. Opt. Technol. Lett. 2019, 61, 2141–2149. [Google Scholar] [CrossRef]
- Du, C.; Yang, Z.; Zhong, S. A compact coplanar waveguide-fed band-notched four-port flexible ultra-wide band-multi-input-multi-output slot antenna for wireless body area network and internet of things applications. Int. J. RF Microw. Comput. Aided Eng. 2022, 32, e23289. [Google Scholar] [CrossRef]
- Goswami, C.; Ghatak, R.; Poddar, D.R. Multi-band bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators. IET Microw. Antennas Propag. 2018, 12, 1719–1727. [Google Scholar] [CrossRef]
- Xie, T.; Yu, J.; Lin, Z.; Li, Y.; Zhang, G.; Yu, Z. A Novel Dual-Band “C+O” Structure Antenna. Int. J. Antennas Propag. 2021, 2021, 7974349. [Google Scholar] [CrossRef]
- Fertas, F.; Fertas, K.; Denidni, T.A.; Challal, M. Design of miniaturized tri-band antenna based on differential evolution algorithm. Microw. Opt. Technol. Lett. 2022, 65, 930–935. [Google Scholar] [CrossRef]
- Faisal, F.; Amin, Y.; Cho, Y. Compact and flexible novel wideband flower-shaped CPW-fed antennas for high data wireless applications. IEEE Trans. Antennas Propag. 2019, 67, 4184–4188. [Google Scholar] [CrossRef]
- Bui, D.H.N.; Vuong, T.P.; Benech, P.; Verdier, J.; Allard, B. Gain enhancement of suspended miniaturized antenna on high-loss paper substrate. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; IEEE: Washington, DC, USA, 2017; pp. 2163–2164. [Google Scholar]
- Jiang, W.; Gong, S.; Hong, T.; Mu, X. Printed L-band monopole antenna with a bionical structure. Microw. Opt. Technol. Lett. 2011, 53, 1004–1006. [Google Scholar] [CrossRef]
- Jabbar, A.; Arif, A.; Zubair, M.; Riaz, K.; Mehmood, M.Q. A Low-cost Photopaper Based Wideband Wearable Antenna for WBAN Applications. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 942–945. [Google Scholar]
- Jabbar, A. A photopaper-based low-cost, wideband wearable antenna for wireless body area network applications. IET Microwaves. Antennas Propag. 2022, 16, 962–970. [Google Scholar]
Dimensions Parameters | Unit (mm) | Dimensions Parameters | Unit (mm) |
---|---|---|---|
W | 40 | S1 | 0.5 |
L | 50 | S2 | 0.4 |
L1 | 23 | S3 | 0.6 |
L2 | 7 | a | 7.3 |
L3 | 9 | b | 14.3 |
L4 | 18.5 | h | 10 |
No. | Bandwidth (Simulation) | Application Bands Covered |
---|---|---|
1 | 1.29–1.70 GHz (27%) | 4G LTE (1.447–1.467 GHz) GPS L1 (1.574–1.576 GHz) BeiDou BD2 B1(1.559–1.563 GHz) |
2 | 3.34–3.66 GHz (9%) | TDD (3.4–3.6 GHz) WIMAX (3.3–3.8 GHz) 5G n77 (3.3–4.1 GHz) 5G n88 (3.3–3.8 GHz) |
3 | 5.05–5.92 GHz (16%) | WLAN (802.11 a/n: 5.15–5.35 GHz, 5.725–5.825 GHz) |
Ref. | Dimensions (mm3) | Operating Bands (GHz) | Substrate | Gain | Flexible | FBW (%) |
---|---|---|---|---|---|---|
[17] | 20× 28 × 0.025 | 3.43–6.29 | Polyamide | 3.7 | Yes | 58.84% |
[7] | 41 × 29 × 1.6 | 1.51–2.31 3.32–3.8 4.59–5.2 | FR4 | 2.41–3.91 | No | 64.7% 33.9% 13.4% |
[6] | 50 × 40 × 1.6 | 0.79–3.18 3.29–3.98 4.98–7.62 | FR4 | 3.45 | No | 117.1% 18.9% 41.9% |
[18] | 60 × 55 × 0.23 | 1.6–2 | Paper | 5.3 | Yes | —— |
[19] | 70 × 70 × 1.5 | 1.3–1.8 | FR4 | —— | No | 32.3% |
[12] | 40 × 40 × 1.52 | 3.18–11.50 | Taconic RF-30 | —— | —— | —— |
[20] | 40 × 28 × 0.27 | 2.36–2.48 | Photopaper | 1.61 | Yes | 86% |
[21] | 40 × 30 × 0.27 | 2.3–5.3 | Photopaper | 1.91–3.48 | Yes | 84.35% |
This work | 40 × 50 × 0.1 | 1.29–1.75 3.11–3.65 5.09–5.87 | Polyimide | 3.3 | Yes | 27% 9% 16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Wang, F.; Zhang, R.; Niu, R.; Chang, Y.; Ran, X.; Sun, R.; Zhang, G.; Lu, Z. A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications. Electronics 2025, 14, 253. https://doi.org/10.3390/electronics14020253
Yu Z, Wang F, Zhang R, Niu R, Chang Y, Ran X, Sun R, Zhang G, Lu Z. A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications. Electronics. 2025; 14(2):253. https://doi.org/10.3390/electronics14020253
Chicago/Turabian StyleYu, Zhen, Feng Wang, Ruixin Zhang, Ruirong Niu, Yi Chang, Xiaoying Ran, Runzhi Sun, Guodong Zhang, and Zewei Lu. 2025. "A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications" Electronics 14, no. 2: 253. https://doi.org/10.3390/electronics14020253
APA StyleYu, Z., Wang, F., Zhang, R., Niu, R., Chang, Y., Ran, X., Sun, R., Zhang, G., & Lu, Z. (2025). A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/WIMAX/WLAN Applications. Electronics, 14(2), 253. https://doi.org/10.3390/electronics14020253