Fast Discrete Krawtchouk Transform Algorithms for Short-Length Input Sequences
Abstract
1. Introduction
1.1. State-of-the-Art of the Problem
1.2. The Main Contributions of the Paper
2. Short Background
- is an order N identity matrix;
- is a 2 × 2 Hadamard matrix;
- is an N × M matrix of ones (a matrix where every element is equal to one);
- ⮾ is the Kronecker product of two matrices;
- ⊕ is the direct sum of two matrices;
- an empty cell in a matrix means it contains zero;
- the multipliers were marked as .
3. The DKT Algorithms with Reduced Complexity for Short-Length Input Sequences
3.1. Algorithm for the 3-Point DKT
3.2. Algorithm for the 4-Point DKT
3.3. Algorithm for the 5-Point DKT
3.4. Algorithm for the 6-Point DKT
3.5. Algorithm for the 7-Point DKT
3.6. Algorithm for the 8-Point DKT
3.7. Generalization of the Proposed Algorithms
4. Results
5. Discussion of Computational Complexity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Step 1 | Step 2 | 
|---|---|
| , ; | 
| Step 1 | Step 2 | Step 3 | 
|---|---|---|
| , , ; | , , | , | 
| Step 1 | Step 2 | Step 3 | 
|---|---|---|
| , , ; | , , , ; | , . | 
| Step 1 | Step 2 | Step 3 | 
|---|---|---|
| , , ,; | 
| Step 1 | Step 2 | Step 3 | 
|---|---|---|
| , , ,; | . | 
| Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | 
|---|---|---|---|---|
| , , , , ; | 
References
- Flusser, J.; Suk, T.; Zitová, B. 2D and 3D Image Analysis by Moments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yang, L.; Liu, X.; Hu, Z. Advance and prospect of discrete Tchebichef transform and its application. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020. [Google Scholar]
- Mefoued, A.; Kouadria, N.; Harize, S.; Doghmane, N. Improved discrete Tchebichef transform approximations for efficient image compression. J. Real-Time Image Process. 2023, 21, 12. [Google Scholar] [CrossRef]
- Ke, W.; Chan, K.-H. A multilayer CARU framework to obtain probability distribution for paragraph-based sentiment analysis. Appl. Sci. 2021, 11, 11344. [Google Scholar] [CrossRef]
- Tahiri, M.A.; Amakdouf, H.; El Mallahi, M.; Qjidaa, H. Optimized quaternion radial Hahn moments application to deep learning for the classification of diabetic retinopathy. Multimed Tools Appl. 2023, 82, 46217–46240. [Google Scholar] [CrossRef]
- Younsi, M.; Diaf, M.; Siarry, P. Comparative study of orthogonal moments for human postures recognition. Eng. Appl. Artif. Intell. 2023, 120, 105855. [Google Scholar] [CrossRef]
- Chiang, A.; Liao, S. Image analysis with Legendre moment descriptors. J. Comput. Sci. 2015, 11, 127–136. [Google Scholar] [CrossRef]
- Camacho-Bello, C. Exact Legendre–Fourier moments in improved polar pixels configuration for image analysis. IET Image Process. 2018, 13, 118–124. [Google Scholar] [CrossRef]
- Asli, B.H.S.; Flusser, J. Fast computation of Krawtchouk moments. Inf. Sci. 2014, 288, 73–86. [Google Scholar] [CrossRef]
- Venkataramana, A.; Raj, P.A. Image watermarking using Krawtchouk moments. In Proceedings of the 2007 International Conference on Computing: Theory and Applications (ICCTA’07), Kolkata, India, 5–7 March 2007; pp. 676–680. [Google Scholar]
- Papakostas, G.A.; Tsougenis, E.D.; Koulouriotis, D.E. Near optimum local image watermarking using Krawtchouk moments. In Proceedings of the 2010 IEEE International Conference on Imaging Systems and Techniques, Thessaloniki, Greece, 1–2 July 2010; pp. 464–467. [Google Scholar]
- Yamni, M.; Karmouni, H.; Daoui, A.; Sayyouri, M.; Qjidaa, H. Blind image zero-watermarking algorithm based on radial Krawtchouk moments and chaotic system. In Proceedings of the 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 9–11 June 2020; pp. 1–7. [Google Scholar]
- Zhang, L.; Xiao, W.; Qian, G.; Ji, Z. Rotation, scaling, and translation invariant local watermarking technique with Krawtchouk moments. Chin. Opt. Lett. 2007, 5, 21–24. [Google Scholar]
- Yap, P.-T.; Paramesran, R.; Ong, S.-H. Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 2003, 12, 1367–1377. [Google Scholar] [CrossRef]
- Yap, P.T.; Raveendran, P.; Ong, S.H. Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction. In Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 908–912. [Google Scholar]
- Karmouni, H.; Jahid, T.; Lakhili, Z.; Hmimid, A.; Sayyouri, M.; Qjidaa, H.; Rezzouk, A. Image reconstruction by Krawtchouk moments via digital filter. In Proceedings of the International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 17–19 April 2017; pp. 1–7. [Google Scholar]
- Mesbah, A.; El Mallahi, M.; Lakhili, Z.; Qjidaa, H.; Berrahou, A. Fast and accurate algorithm for 3D local object reconstruction using Krawtchouk moments. In Proceedings of the 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 29 September–1 October 2016; pp. 1–6. [Google Scholar]
- Rani, J.S.; Devaraj, D. Face recognition using Krawtchouk moment. Sadhana 2012, 37, 441–460. [Google Scholar] [CrossRef]
- Rivero-Castillo, D.; Pijeira, H.; Assunçao, P. Edge detection based on Krawtchouk polynomials. J. Comput. Appl. Math. 2015, 284, 244–250. [Google Scholar] [CrossRef]
- Yamni, M.; Daoui, A.; Pławiak, P.; Mao, H.; Alfarraj, O.; El-Latif, A.A.A. A novel 3D reversible data hiding scheme based on integer–reversible Krawtchouk transform for IoMT. Sensors 2023, 23, 7914. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yao, X.-R.; Zhao, Q.; Liu, S.; Liu, X.-F.; Wang, C.; Zhai, G.-J. Single-pixel compressive imaging based on the transformation of discrete orthogonal Krawtchouk moments. Opt. Express 2019, 27, 29838–29853. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Gao, L.; Zhai, A.; Wang, D. Comparison of common algorithms for single-pixel imaging via compressed sensing. Sensors 2023, 23, 4678. [Google Scholar] [CrossRef]
- Honarvar Shakibaei Asli, B.; Horri Rezaei, M. Four-term recurrence for fast Krawtchouk moments using Clenshaw algorithm. Electronics 2023, 12, 1834. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Al-Haddad, S.A.R.; Mahmmod, B.M.; Jassim, W.A. Fast recursive computation of Krawtchouk polynomials. J. Math. Imaging Vis. 2018, 60, 285–303. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, F.X.; Guo, R.; Kumar, S.; Wang, S.; Chang, S.-F. Fast orthogonal projection based on Kronecker product. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2929–2937. [Google Scholar]
- Majorkowska-Mech, D.; Cariow, A. Discrete pseudo-fractional Fourier transform and its fast algorithm. Electronics 2021, 10, 2145. [Google Scholar] [CrossRef]
- Mahmmod, B.M.; Abdul-Hadi, A.M.; Abdulhussain, S.H.; Hussien, A. On computational aspects of Krawtchouk polynomials for high orders. J. Imaging 2020, 6, 81. [Google Scholar] [CrossRef]
- Al-Utaibi, K.A.; Abdulhussain, S.H.; Mahmmod, B.M.; Naser, M.A.; Alsabah, M.; Sait, S.M. Reliable recurrence algorithm for high-order Krawtchouk polynomials. Entropy 2021, 23, 1162. [Google Scholar] [CrossRef]
- Venkataramana, A.; Raj, P.A. Recursive computation of forward Krawtchouk moment transform using Clenshaw’s recurrence formula. In Proceedings of the 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, Hubli, India, 15–17 December 2011; pp. 200–203. [Google Scholar]
- Karampasis, N.D.; Spiliotis, I.M.; Boutalis, Y.S. Real-time computation of Krawtchouk moments on gray images using block representation. SN Comput. Sci. 2021, 2, 124. [Google Scholar] [CrossRef]
- Mesbah, A.; El Mallahi, M.; El Fadili, H.; Zenkouar, K.; Berrahou, A.; Qjidaa, H. An algorithm for fast computation of 3D Krawtchouk moments for volumetric image reconstruction. In Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015 (MedCT 2015), Saïdia, Morocco, 7–9 May 2015; El Oualkadi, A., Choubani, F., El Moussati, A., Eds.; Lecture Notes in Electrical Engineering. Springer: Cham, Switzerland, 2015; Volume 380. [Google Scholar]
- Wu, J.S.; Yang, C.F.; Shu, H.Z.; Wang, L.; Senhadji, L. A fast algorithm for the 4x4 discrete Krawtchouk transform. In Proceedings of the 2014 International Symposium on Information Technology (ISIT 2014), Dalian, China, 14–16 October 2014; pp. 23–28. [Google Scholar]
- Andreatto, B.; Cariow, A. Automatic generation of fast algorithms for matrix-vector multiplication. Int. J. Comput. Math. 2017, 95, 626–644. [Google Scholar] [CrossRef]
- Polyakova, M.; Witenberg, A.; Cariow, A. The fast type-IV discrete sine transform algorithms for short-length input sequences. Bull. Pol. Acad. Sci. Tech. Sci. 2025, 73, e153827. [Google Scholar] [CrossRef]
- Cariow, A.; Polyakova, M. The fast discrete Tchebichef transform algorithms for short-length input sequences. Signals 2025, 6, 23. [Google Scholar] [CrossRef]
- Kolodochka, D.; Polyakova, M.; Rogachko, V. Prediction the accuracy of image inpainting using texture descriptors. Radio Electron. Comput. Sci. Manag. 2025, 2, 56–67. [Google Scholar] [CrossRef]
- Xing, Z.; Lam, C.-T.; Yuan, X.; Im, S.-K.; Machado, P. MMQW: Multi-Modal Quantum Watermarking Scheme. IEEE Trans. Inf. Forensics Secur. 2024, 19, 5181–5195. [Google Scholar] [CrossRef]







| N | Direct Method | Proposed Algorithms | ||||
|---|---|---|---|---|---|---|
| Adds. | Mults. | Shifts | Adds. | Mults. | Shifts | |
| 3 | 5 | 4 | 4 | 4 (−20%) | 2 (−50%) | 1 (−75%) | 
| 4 | 12 | 16 | − | 10 (−17%) | 6 (−63%) | − | 
| 5 | 16 | 4 | 21 | 12 (−25%) | 2 (−50%) | 6 (−71%) | 
| 6 | 30 | 28 | 16 | 20 (−33%) | 12 (−57%) | 8 (−50%) | 
| 7 | 37 | 40 | 4 | 23 (−38%) | 12 (−70%) | 1 (−75%) | 
| 8 | 56 | 64 | − | 38 (−32%) | 26 (−59%) | − | 
| N | Symmetry of Krawtchouk Polynomials | Structural Approach | ||||
|---|---|---|---|---|---|---|
| Adds. | Mults. | Shifts | Adds. | Mults. | Shifts | |
| 4 | 8 | 8 | − | 10 (+25%) | 6 (−25%) | − | 
| 5 | 12 | 2 | 6 | 12 (0%) | 2 (0%) | 6 (0%) | 
| 6 | 18 | 14 | 8 | 20 (+11%) | 12 (−14%) | 8 (0%) | 
| 7 | 18 | 15 | 1 | 23 (+28%) | 12 (−20%) | 1 (0%) | 
| 8 | 32 | 32 | − | 38 (+19%) | 26 (−19%) | − | 
| even N | − | − | − | − | ||
| odd N | − | − | − | − | ||
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakova, M.; Cariow, A.; Papliński, J.P. Fast Discrete Krawtchouk Transform Algorithms for Short-Length Input Sequences. Electronics 2025, 14, 3958. https://doi.org/10.3390/electronics14193958
Polyakova M, Cariow A, Papliński JP. Fast Discrete Krawtchouk Transform Algorithms for Short-Length Input Sequences. Electronics. 2025; 14(19):3958. https://doi.org/10.3390/electronics14193958
Chicago/Turabian StylePolyakova, Marina, Aleksandr Cariow, and Janusz P. Papliński. 2025. "Fast Discrete Krawtchouk Transform Algorithms for Short-Length Input Sequences" Electronics 14, no. 19: 3958. https://doi.org/10.3390/electronics14193958
APA StylePolyakova, M., Cariow, A., & Papliński, J. P. (2025). Fast Discrete Krawtchouk Transform Algorithms for Short-Length Input Sequences. Electronics, 14(19), 3958. https://doi.org/10.3390/electronics14193958
 
        



 
       