Broken Rotor Bar Detection in Variable-Speed-Drive-Fed Induction Motors Through Statistical Features and Artificial Neural Networks
Abstract
1. Introduction
2. Theoretical Background
2.1. BRB Indicators in a VSD-Fed IM
2.2. Statistical Parameters
2.2.1. Mean
2.2.2. Median
2.2.3. Mode
2.2.4. Variance
2.2.5. Skewness
2.2.6. Kurtosis
2.3. Artificial Neural Networks
3. Methodology
3.1. Data Acquisition at Different Rotating Speed
3.2. Windowing of the Start-Up Transient Electric Current Signal
3.3. Statistical-Feature Retrieval and Dataset Construction
3.4. Training Assessment and Test of the Proposed ANN
- Moment starting values
- For each iteration:
- (a)
- Counter increment:
- (b)
- Gradient computation with current values:
- (c)
- Moment values updating:
- (d)
- Bias corretion:
- (e)
- Weight updating:
4. Results
4.1. Training Results
4.2. Test Results
- Accuracy: 99.2%.
- Sensitivity: 98.4%.
- Specificity: 100%.
- Precision: 100%.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IM | Induction motors |
BRB | Broken rotor bars |
VSD | Variable speed drives |
ANN | Artificial neural network |
HLT | Healthy |
PWM | pulse width modulation |
MCSA | Motor current signature analysis |
ADAM | Adaptive Moment Estimation |
k-NN | k-nearest neighbors |
SVM | support vector machines |
MLP | multilayer perceptron |
References
- Torrent, M.; Blanqué, B.; Monjo, L. Replacing Induction Motors without Defined Efficiency Class by IE Class: Example of Energy, Economic, and Environmental Evaluation in 1.5 kW—IE3 Motors. Machines 2023, 11, 567. [Google Scholar] [CrossRef]
- Goman, V.; Prakht, V.; Kazakbaev, V.; Dmitrievskii, V. Comparative Study of Induction Motors of IE2, IE3 and IE4 Efficiency Classes in Pump Applications Taking into Account CO2 Emission Intensity. Appl. Sci. 2020, 10, 8536. [Google Scholar] [CrossRef]
- Kazakhaev, V.; Prakht, V.; Dmitrievskii, V. Comparative Assessment of Power Consumption of IE2 Induction and IE5 Synchronous Reluctance Motors in Multistage Centrifugal Pump Application. In Proceedings of the 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 15–18 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Gultekin, M.A.; Bazzi, A. Review of Fault Detection and Diagnosis Techniques for AC Motor Drives. Energies 2023, 16, 5602. [Google Scholar] [CrossRef]
- Garcia-Calva, T.A.; Morinigo-Sotelo, D.; Fernandez-Cavero, V.; Garcia-Perez, A.; Romero-Troncoso, R.d.J. Early Detection of Broken Rotor Bars in Inverter-Fed Induction Motors Using Speed Analysis of Startup Transients. Energies 2021, 14, 1469. [Google Scholar] [CrossRef]
- Chisedzi, L.P.; Muteba, M. Detection of Broken Rotor Bars in Cage Induction Motors Using Machine Learning Methods. Sensors 2023, 23, 9079. [Google Scholar] [CrossRef]
- Jiang, D.; Shen, Z.; Li, Q.; Chen, J.; Liu, Z. Advanced Pulse-Width-Modulation: With Freedom to Optimize Power Electronics Converters. In CPSS Power Electronics Series; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Morales-Leal, T.; Moreno-Munoz, A.; Ortiz-López, M.A.; Geninatti, S.R.; Quiles-Latorre, F.J. New Random PWM Method at Constant Switching Frequency and Maximum Harmonic Reduction Created with a Flexible FPGA-Based Test Bench. IEEE Access 2023, 11, 19385–19394. [Google Scholar] [CrossRef]
- Taha, W.; Azer, P.; Callegaro, A.D.; Emadi, A. Multiphase Traction Inverters: State-of-the-Art Review and Future Trends. IEEE Access 2022, 10, 4580–4599. [Google Scholar] [CrossRef]
- Ahmed, A.; Biswas, S.P.; Anower, M.S.; Islam, M.R.; Mondal, S.; Muyeen, S.M. A Hybrid PWM Technique to Improve the Performance of Voltage Source Inverters. IEEE Access 2023, 11, 4717–4729. [Google Scholar] [CrossRef]
- Atta, M.E.E.-D.; Ibrahim, D.K.; Gilany, M.I. Broken Bar Fault Detection and Diagnosis Techniques for Induction Motors and Drives: State of the Art. IEEE Access 2022, 10, 88504–88526. [Google Scholar] [CrossRef]
- Hmida, M.A.; Braham, A. VFD Fed Induction Motor Fault Detection Using Drive’s Data and Harmonic Wavelet Transform. In Proceedings of the 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 20–23 July 2020; pp. 225–230. [Google Scholar] [CrossRef]
- Samanta, A.K.; Naha, A.; Routray, A.; Deb, A.K. Fast and Accurate Spectral Estimation for Online Detection of Partial Broken Bar in Induction Motors. Mech. Syst. Signal Process. 2018, 98, 63–77. [Google Scholar] [CrossRef]
- Wang, P.; Wang, K.; Chen, L. Broken Rotor Bars Detection in Inverter-Fed Induction Motors Under Continuous Switching of Different Speed Modes. IEEE Trans. Ind. Electron. 2024, 71, 975–984. [Google Scholar] [CrossRef]
- Garcia-Calva, T.A.; Morinigo-Sotelo, D.; Duque-Perez, O.; Garcia-Perez, A.; Romero-Troncoso, R.d.J. Time-Frequency Analysis Based on Minimum-Norm Spectral Estimation to Detect Induction Motor Faults. Energies 2020, 13, 4102. [Google Scholar] [CrossRef]
- Abdulkareem, A.; Anyim, T.; Popoola, O.; Abubakar, J.; Ayoade, A. Prediction of Induction Motor Faults Using Machine Learning. Heliyon 2025, 11, e41493. [Google Scholar] [CrossRef] [PubMed]
- Noussaiba, L.A.E.; Abdelaziz, F. ANN-Based Fault Diagnosis of Induction Motor under Stator Inter-Turn Short-Circuits and Unbalanced Supply Voltage. ISA Trans. 2024, 145, 373–386. [Google Scholar] [CrossRef]
- Hussain, R.; Alshaikh Saleh, M.; Refaat, S.S. Various Faults Classification of Industrial Application of Induction Motors Using Supervised Machine Learning: A Comprehensive Review. IEEE Access 2025, 13, 146649–146675. [Google Scholar] [CrossRef]
- Preethi, I.; Suryaprakash, S.; Mathankumar, M. A State-of-Art Approach on Fault Detection in Three Phase Induction Motor Using AI Techniques. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 567–573. [Google Scholar] [CrossRef]
- Bahgat, B.; Elhay, E.; Elkholy, M. Advanced Fault Detection Technique of Three Phase Induction Motor: Comprehensive Review. Discov. Electron. 2024, 1, 9. [Google Scholar] [CrossRef]
- Cabal-Yepez, E.; Mata Chavez, R.; Ledesma Carrillo, L.; Lopez Ramirez, M.; Ferrucho-Alvarez, E.; Martinez-Herrera, A. Multiple Fault Detection in Induction Motors through Homogeneity and Kurtosis Computation. Energies 2022, 15, 1541. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Zhang, P.; Zhang, K.; Xu, Y. Motor Current Time-Varying Quadratic Phase Coupling Analysis and Its Application in Traction Motor Fault Detection Under Varying-Speed Condition. IEEE Sens. J. 2024, 24, 12877–12886. [Google Scholar] [CrossRef]
- Garcia-Calva, T.A.; Morinigo-Sotelo, D.; Garcia-Perez, A.; Camarena-Martinez, D.; Romero-Troncoso, R.d.J. De-modulation Technique for Broken Rotor Bar Detection in Inverter-Fed Induction Motor Under Non-Stationary Conditions. IEEE Trans. Energy Convers. 2019, 34, 1496–1503. [Google Scholar] [CrossRef]
- Korn, G.A.; Korn, T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review; Dover Publications: Mineola, NY, USA, 2000; ISBN 978-0-486-41147-7. [Google Scholar]
- Geetha, G.; Geethanjali, P. Computational Intelligence to Detect Bearing Faults Using Optimal Features from Motor Current Signals. Syst. Sci. Control Eng. 2024, 12, 2437157. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-147139-9. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar] [CrossRef]
- Abu Elhaija, W.; Abu Al-Haija, Q. A Novel Dataset and Lightweight Detection System for Broken Bars Induction Motors Using Optimizable Neural Networks. Intell. Syst. Appl. 2023, 17, 200167. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, Q.; Sun, Y.; Song, X.; Tang, H.; Liu, Z.; Chen, Q. A Double-Branch Improved Residual Shrinkage Network for Diagnosis of Induction Motor Broken Rotor Bar Under Small Samples. IEEE Trans. Instrum. Meas. 2025, 74, 3502012. [Google Scholar] [CrossRef]
- Barrera-Llanga, K.; Burriel-Valencia, J.; Sapena-Bano, A.; Martinez-Roman, J. Fault Detection in Induction Machines Using Learning Models and Fourier Spectrum Image Analysis. Sensors 2025, 25, 471. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; He, Q.; Gu, F. DNOCNet: A Novel End-to-End Network for Induction Motor Drive Systems Fault Diagnosis Under Speed Fluctuation Condition. IEEE Trans. Ind. Inform. 2024, 20, 8284–8293. [Google Scholar] [CrossRef]
- Bechiri, M.B.; Alal, B.; Nawi, M.; Khshkhsh, B.; Al-Saif, H.; Boudjemlen, A. Effective Diagnosis Approach for Broken Rotor Bar Fault Using Bayesian-Based Optimization of Machine Learning Hyperparameters. IEEE Access 2024, 12, 139923–139936. [Google Scholar] [CrossRef]
- Khan, M.A.; Asad, B.; Vaimann, T.; Kallaste, A. Improved Diagnostic Approach for BRB Detection and Classification in Inverter-Driven Induction Motors Employing Sparse Stacked Autoencoder (SSAE) and LightGBM. Electronics 2024, 13, 1292. [Google Scholar] [CrossRef]
Parameter | Model 1 | Model 2 | Model 3 | Model 4 | Optimal Results |
---|---|---|---|---|---|
Number of hidden layers | 4 | 4 | 2 | 3 | 3 |
Number of neurons on each layer | 45, 35, 30, 2 | 35, 30, 20, 2 | 30, 2 | 25, 20, 2 | 35, 30, 2 |
Activation functions | Sigmoid, ReLU, Sigmoid, ReLU | ReLU, ReLU, ReLU, ReLU | ReLU, Sigmoid | Sigmoid, Sigmoid, Sigmoid | ReLU, ReLU, ReLU |
Batch size | 32 | 32 | 32 | 32 | 32 |
Learning rate | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Accuracy | 98% | 98% | 98% | 98% | 99% |
Author | Motor Power | Analyzed Fault | Operational Frequency | Applied Technique | Effectiveness Metric |
---|---|---|---|---|---|
Abu Elhaija, W. et al., 2023 [28] | 3 hp | 1–3 BRB | 60 Hz | Signal Simulation in MATLAB. Deep Learning. | Accuracy 0.99 |
Liu, G. et al., 2025 [29] | 1 hp | 1–3 BRB | 60 Hz | Hilbert Transform. Deep Learning. | Accuracy 0.99 |
Barrera-Llanga, K. et al., 2025 [30] | 20 hp | BRB, Bearing faults | 50 Hz | Fast Fourier Transform (FFT). Image Processing. Deep Learning. | Accuracy 0.98 |
Guo, J. et al., 2024 [31] | 5 hp | 1–2 BRB, Bearing faults | 50 Hz | Fast Fourier Transform (FFT). Deep Learning. | Accuracy 0.99 |
Bechiri, M.B. et al., 2024 [32] | 1 hp | 1–4 BRB | 60 Hz | Discrete Wavelet Transform (DWT). Deep Learning. | Accuracy 0.96 |
Khan, M.A. et al., 2024 [33] | 10 hp | 1–3 BRB | 50 Hz | Fourier Transform (FFT). Spectrograms. Deep Learning. | Accuracy 0.99 |
Proposed Approach | 1 hp | 1 BRB | 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz | Statistical Features Artificial Neural Network (ANN). | Accuracy 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Perez, J.M.; Ledesma-Carrillo, L.M.; Lopez-Ramirez, M.; Landin-Martinez, J.O.; Hernandez-Gomez, G.; Cabal-Yepez, E. Broken Rotor Bar Detection in Variable-Speed-Drive-Fed Induction Motors Through Statistical Features and Artificial Neural Networks. Electronics 2025, 14, 3750. https://doi.org/10.3390/electronics14193750
Flores-Perez JM, Ledesma-Carrillo LM, Lopez-Ramirez M, Landin-Martinez JO, Hernandez-Gomez G, Cabal-Yepez E. Broken Rotor Bar Detection in Variable-Speed-Drive-Fed Induction Motors Through Statistical Features and Artificial Neural Networks. Electronics. 2025; 14(19):3750. https://doi.org/10.3390/electronics14193750
Chicago/Turabian StyleFlores-Perez, Jose M., Luis M. Ledesma-Carrillo, Misael Lopez-Ramirez, Jaime O. Landin-Martinez, Geovanni Hernandez-Gomez, and Eduardo Cabal-Yepez. 2025. "Broken Rotor Bar Detection in Variable-Speed-Drive-Fed Induction Motors Through Statistical Features and Artificial Neural Networks" Electronics 14, no. 19: 3750. https://doi.org/10.3390/electronics14193750
APA StyleFlores-Perez, J. M., Ledesma-Carrillo, L. M., Lopez-Ramirez, M., Landin-Martinez, J. O., Hernandez-Gomez, G., & Cabal-Yepez, E. (2025). Broken Rotor Bar Detection in Variable-Speed-Drive-Fed Induction Motors Through Statistical Features and Artificial Neural Networks. Electronics, 14(19), 3750. https://doi.org/10.3390/electronics14193750