An Event-Based Time-Incremented SNN Architecture Supporting Energy-Efficient Device Classification
Abstract
1. Introduction
- (1)
- Uniqueness—features should be different across the pool of devices to be identified.
- (2)
- Relative Stability—features should remain unchanged across the time period for which they are intended to be used.
- (3)
- Independence—features should be dominated by transmitter-induced effects and not depend on non-hardware effects such as bit-level information content and channel operating conditions.
1.1. Relationship to Prior Research
1.2. Paper Contribution
1.3. Paper Organization
2. Demonstration Methodology
2.1. WirelessHART Signals
2.2. RF Signal Eventization Encoding
2.3. Classification Models
2.3.1. RndF Classifier
2.3.2. CNN Classifier
2.3.3. TI-SNN Classifier
- is the membrane decay rate.
- is the spiking threshold.
- is the number of neurons in the previous layer ( for ).
- is the spike output from the nth neuron in the previous layer.
2.3.4. RE-SNN Classifier
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D | One-Dimensional |
2D | Two-Dimensional |
AWGN | Additive White Gaussian Noise |
CNN | Convolutional Neural Network |
CUDA | Compute Unified Device Architecture |
ESR | Event Sparsity Ratio |
EV | Eventized |
GPU | Graphics Processing Unit |
GTX | Gabor Transform |
IoT | Internet of Things |
LIF | Leaky Integrate-and-Fire |
MPS | Metal Performance Shaders |
NonEV | Non-Eventized |
ReLU | Rectified Linear Unit |
RE-SNN | Rate-Encoded Spiking Neural Network |
RF | Radio Frequency |
RFF | Radio Frequency Fingerprinting |
RndF | Random Forest |
ROI | Region of Interest |
SDR | Software Defined Radio |
SNN | Spiking Neural Network |
SNR | Signal-to-Noise Ratio |
SWaP | Size, Weight, and Power |
TI-SNN | Time-Incremented Spiking Neural Network |
TSCH | Time-Slotted Channel Hopping |
WirelessHART | Wireless Highway Addressable Remote Transducer |
YOLO | You Only Look Once |
References
- Smith, M.J.; Temple, M.A.; Dean, J.W. Effects of RF Signal Eventization Encoding on Device Classification Performance. Electronics 2024, 13, 2020. [Google Scholar] [CrossRef]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K.; et al. Event-Based Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 154–180. [Google Scholar] [CrossRef]
- Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [Google Scholar] [CrossRef]
- Serinken, N.; Üreten, O. Generalised Dimension Characterisation of Radio Transmitter Turn-on Transients. Electron. Lett. 2000, 36, 1064–1066. [Google Scholar] [CrossRef]
- Hall, J.; Barbeau, M.; Kranakis, E. Detection of Transient in Radio Frequency Fingerprinting Using Signal Phase. In Proceedings of the IASTED International Conference on Wireless and Optical Communications, Benalmadena, Spain, 8–10 September 2003. [Google Scholar]
- Ureten, O.; Serinken, N. Wireless Security through RF Fingerprinting. Can. J. Electr. Comput. Eng. 2007, 32, 27–33. [Google Scholar] [CrossRef]
- Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N.C. A Review of Radio Frequency Fingerprinting Techniques. IEEE J. Radio Freq. Identif. 2020, 4, 222–233. [Google Scholar] [CrossRef]
- Xie, L.; Peng, L.; Zhang, J.; Hu, A. Radio Frequency Fingerprint Identification for Internet of Things: A Survey. Secur. Saf. 2024, 3, 2023022. [Google Scholar] [CrossRef]
- Rondeau, C.M.; Temple, M.A.; Kabban, C.S. DNA Feature Selection for Discriminating WirelessHART IIoT Devices. In Proceedings of the Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020; pp. 6387–6396. [Google Scholar] [CrossRef]
- Gutierrez del Arroyo, J.A.; Borghetti, B.J.; Temple, M.A. Considerations for Radio Frequency Fingerprinting across Multiple Frequency Channels. Sensors 2022, 22, 2111. [Google Scholar] [CrossRef]
- Maier, M.J.; Hayden, H.S.; Temple, M.A.; Fickus, M.C. Ensuring the Longevity of WirelessHART Devices in Industrial Automation and Control Systems using Distinct Native Attribute Fingerprinting. Int. J. Crit. Infrastruct. Prot. 2023, 43, 100641. [Google Scholar] [CrossRef]
- Bastiaans, M.J. Gabor’s Expansion of a Signal into Gaussian Elementary Signals. Proc. IEEE 1980, 68, 538–539. [Google Scholar] [CrossRef]
- Bastiaans, M.J.; Geilen, M.C. On the Discrete Gabor Transform and the Discrete Zak Transform. Signal Process. 1996, 49, 151–166. [Google Scholar] [CrossRef]
- Qian, S.; Chen, D. Discrete Gabor Transform. IEEE Trans. Signal Process. 1993, 41, 2429–2438. [Google Scholar] [CrossRef]
- Smith, M.; Temple, M.; Dean, J. Development of a Neuromorphic-Friendly Spiking Neural Network for RF Event-Based Classification. In Proceedings of the Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 7–10 January 2020; pp. 7092–7101. Available online: https://hdl.handle.net/10125/109699 (accessed on 15 September 2025).
- Auge, D.; Hille, J.; Mueller, E.; Knoll, A. A Survey of Encoding Techniques for Signal Processing in Spiking Neural Networks. Neural Process. Lett. 2021, 53, 4693–4710. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, X.; Zhang, Y. Energy-Efficient Spiking Segmenter for Frame and Event-Based Images. Biomimetics 2023, 8, 356. [Google Scholar] [CrossRef] [PubMed]
- López-Asunción, S.; Ituero, P. Enabling Efficient On-Edge Spiking Neural Network Acceleration with Highly Flexible FPGA Architectures. Electronics 2024, 13, 1074. [Google Scholar] [CrossRef]
- Xue, J.; Xie, L.; Chen, F.; Wu, L.; Tian, Q.; Zhou, Y.; Ying, R.; Liu, P. EdgeMap: An Optimized Mapping Toolchain for Spiking Neural Network in Edge Computing. Sensors 2023, 23, 6548. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xie, H.; Lu, Z.; Hu, J. Energy-Efficient and High-Performance Ship Classification Strategy Based on Siamese Spiking Neural Network in Dual-Polarized SAR Images. Remote Sens. 2023, 15, 4966. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, C.; Bi, X.; Xia, J.; Gao, C.; Tang, Y.; Lai, S. Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream. EURASIP J. Adv. Signal Process. 2023, 56. [Google Scholar] [CrossRef]
- Baidya, T.; Moh, S. Comprehensive Survey on Resource Allocation for Edge-Computing-Enabled Metaverse. Comput. Sci. Rev. 2024, 54, 100680. [Google Scholar] [CrossRef]
- Adil, M.; Song, H.; Khan, M.K.; Farouk, A.; Jin, Z. 5G/6G-enabled Metaverse Technologies: Taxonomy, Applications, and Open Security Challenges with Future Research Directions. J. Netw. Comput. Appl. 2024, 223, 103828. [Google Scholar] [CrossRef]
- Sarah, A.; Nencioni, G.; Khan, M.I. Resource Allocation in Multi-access Edge Computing for 5G-and-Beyond Networks. Comput. Netw. 2023, 227, 109720. [Google Scholar] [CrossRef]
- Ahmad, I.; Gentili, A.; Singh, R.; Ahonen, J.; Suomalainen, J.; Horsmanheimo, S.; Keranen, H.; Harjula, E. Edge computing for critical environments: Vision and existing solutions. Itu J. Future Evol. Technol. 2023, 4, 697–710. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, X.; Chi, K.; Gao, W.; Chen, X.; Shi, Z. Stackelberg Game-Based Multi-Agent Algorithm for Resource Allocation and Task Offloading in MEC-Enabled C-ITS. IEEE Trans. Intell. Transp. Syst. 2025, 1–12. [Google Scholar] [CrossRef]
- Yıldırım, F.; Yalman, Y.; Bayındır, K.Ç.; Terciyanlı, E. Comprehensive Review of Edge Computing for Power Systems: State of the Art, Architecture, and Applications. Appl. Sci. 2025, 15, 4592. [Google Scholar] [CrossRef]
- Suraci, C.; Chukhno, O.; Muntean, G.M.; Molinaro, A.; Araniti, G. Migrate or Not: Medical Digital Twins in the Era of 6G Edge-Based Networks. IEEE Access 2025, 13, 85641–85651. [Google Scholar] [CrossRef]
- Siemens Industry Online Support. WirelessHART Adapter SITRANS AW210—7MP3111. Available online: https://support.industry.siemens.com/cs/document/61527553/wirelesshart-adapter-sitrans-aw210-7mp3111 (accessed on 15 September 2025).
- Pepperl and Fuchs. BULLET—WirelessHART Adapter. Available online: https://www.pepperl-fuchs.com/en/products-gp25581/90287 (accessed on 15 September 2025).
- Zibulski, M.; Zeevi, Y. Oversampling in the Gabor scheme. IEEE Trans. Signal Process. 1993, 41, 2679–2687. [Google Scholar] [CrossRef]
- Forno, E.; Fra, V.; Pignari, R.; Macii, E.; Urgese, G. Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task. Front. Neurosci. 2022, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Tang, K.; Zhou, J.; Wong, W. Low Latency Conversion of Artificial Neural Network Models to Rate-Encoded Spiking Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 14107–14118. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Google, J.B.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 1–12. [Google Scholar] [CrossRef]
- Eshraghian, J.K.; Ward, M.; Neftci, E.O.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training Spiking Neural Networks Using Lessons from Deep Learning. Proc. IEEE 2023, 111, 1016–1054. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Esser, S.K.; Merolla, P.A.; Arthur, J.V.; Cassidy, A.S.; Appuswamy, R.; Andreopoulos, A.; Berg, D.J.; McKinstry, J.L.; Melano, T.; Barch, D.R.; et al. Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing. Proc. Natl. Acad. Sci. USA 2016, 113, 11441–11446. [Google Scholar] [CrossRef] [PubMed]
Device ID | Manufacturer | Model | S/N |
---|---|---|---|
D1 | Siemens a | AW210 | 003095 |
D2 | Siemens | AW210 | 003159 |
D3 | Siemens | AW210 | 003097 |
D4 | Siemens | AW210 | 003150 |
D5 | Pepperl+Fuchs b | Bullet | 1A32DA |
D6 | Pepperl+Fuchs | Bullet | 1A32B3 |
D7 | Pepperl+Fuchs | Bullet | 1A3226 |
D8 | Pepperl+Fuchs | Bullet | 1A32A4 |
Layer Name | Layer Type | Output Shape | |
---|---|---|---|
conv2d_01 | Conv2D | 360 | |
conv2d_02 | Conv2D | 5200 | |
flatten_04 | Flatten | [1904] | 0 |
dense_05 | Dense | [8] | 15,240 |
Total parameters: | 20,800 |
Layer Name | Neuron Type | Output Shape | |
---|---|---|---|
Input_L1 | Input Layer | 0 | |
Linear_L2 | LIF forward Arctan backward | 7590 | |
Linear_L3 | LIF forward Arctan backward | 12,210 | |
Linear_L4 | LIF forward Arctan backward | 888 | |
Total parameters: | 20,688 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weathers, D.L.; Temple, M.A.; Borghetti, B.J. An Event-Based Time-Incremented SNN Architecture Supporting Energy-Efficient Device Classification. Electronics 2025, 14, 3712. https://doi.org/10.3390/electronics14183712
Weathers DL, Temple MA, Borghetti BJ. An Event-Based Time-Incremented SNN Architecture Supporting Energy-Efficient Device Classification. Electronics. 2025; 14(18):3712. https://doi.org/10.3390/electronics14183712
Chicago/Turabian StyleWeathers, David L., Michael A. Temple, and Brett J. Borghetti. 2025. "An Event-Based Time-Incremented SNN Architecture Supporting Energy-Efficient Device Classification" Electronics 14, no. 18: 3712. https://doi.org/10.3390/electronics14183712
APA StyleWeathers, D. L., Temple, M. A., & Borghetti, B. J. (2025). An Event-Based Time-Incremented SNN Architecture Supporting Energy-Efficient Device Classification. Electronics, 14(18), 3712. https://doi.org/10.3390/electronics14183712