Advanced Control Techniques for Power Converter and Drives
1. Introduction
2. Highlighting Key Contributions
2.1. Double-Loop Controller Design of a Single-Phase 3-Level Power Factor Correction Converter
2.2. Robust PI-PD Controller Design: Industrial Simulation Case Studies and a Real-Time Application
2.3. Advanced Distributed Control of Parallel Resonant CLLC DAB Converters
2.4. FPGA Implementation of Nonlinear Model Predictive Control for a Boost Converter with a Partially Saturating Inductor
2.5. Dual-Random Space Vector Pulse Width Modulation Strategy Based on Optimized Beta Distribution
2.6. Stochastic Operation of BESS and MVDC Link in Distribution Networks Under Uncertainty
2.7. A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads
2.8. Symmetric Optimization Strategy Based on Triple-Phase Shift for Dual-Active Bridge Converters with Low RMS Current and Full ZVS over Ultra-Wide Voltage and Load Ranges
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Han, J.-H.; Kim, I.-S. Double-Loop Controller Design of a Single-Phase 3-Level Power Factor Correction Converter. Electronics 2024, 13, 2863. https://doi.org/10.3390/electronics13142863.
- Alyoussef, F.; Kaya, I.; Akrad, A. Robust PI-PD Controller Design: Industrial Simulation Case Studies and a Real-Time Application. Electronics 2024, 13, 3362. https://doi.org/10.3390/electronics13173362.
- Vicente, D.C.; Carrero, A.M.; Díez, E.G.; Solís, J.M.C.; Rubio, F.R. Advanced Distributed Control of Parallel Resonant CLLC DAB Converters. Electronics 2025, 14, 318. https://doi.org/10.3390/electronics14020318.
- Ravera, A.; Oliveri, A.; Lodi, M.; Storace, M. FPGA Implementation of Nonlinear Model Predictive Control for a Boost Converter with a Partially Saturating Inductor. Electronics 2025, 14, 941. https://doi.org/10.3390/electronics14050941.
- Gu, X.; Wu, K.; Jin, X.; Zhang, G.; Chen, W.; Li, C. Dual-Random Space Vector Pulse Width Modulation Strategy Based on Optimized Beta Distribution. Electronics 2025, 14, 1779. https://doi.org/10.3390/electronics14091779.
- Han, C.; Song, S.; Lee, J. Stochastic Operation of BESS and MVDC Link in Distribution Networks Under Uncertainty. Electronics 2025, 14, 2737. https://doi.org/10.3390/electronics14132737.
- Ou, M.; Gong, P.; Guo, H.; Li, G. A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads. Electronics 2025, 14, 2909. https://doi.org/10.3390/electronics14142909.
- Cui, L.; Zhang, Y.; Wang, X.; Zhang, D. Symmetric Optimization Strategy Based on Triple-Phase Shift for Dual-Active Bridge Converters with Low RMS Current and Full ZVS over Ultra-Wide Voltage and Load Ranges. Electronics 2025, 14, 3031. https://doi.org/10.3390/electronics14153031.
References
- Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf. Technol. 2021, 117, 1327–1349. [Google Scholar] [CrossRef]
- Panda, S.K.; Subudhi, B. A Review on Robust and Adaptive Control Schemes for Microgrid. J. Mod. Power Syst. Clean Energy 2023, 11, 1027–1040. [Google Scholar] [CrossRef]
- Gholami-Khesht, H.; Davari, P.; Blaabjerg, F. Chapter 5—Adaptive control in power electronic systems. In Control of Power Electronic Converters and Systems; Blaabjerg, F., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 125–147. [Google Scholar] [CrossRef]
- Ren, Q.; Chen, A.; Fang, J.; Liu, X.; Liu, T.; Zhang, G.; Zhang, C. An Improved Passivity-Based Direct Power Control Strategy for AC/DC Converter Under Unbalanced and Distorted Grid Conditions. IEEE Trans. Power Electron. 2023, 38, 12153–12165. [Google Scholar] [CrossRef]
- Khalid, M. Passivity-Based Nonlinear Control Approach for Efficient Energy Management in Fuel Cell Hybrid Electric Vehicles. IEEE Access 2024, 12, 84169–84188. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, Y.; Liu, X.; Kang, Y.; Liu, H. Analysis of the sideband current harmonics and vibro-acoustics in the PMSM with SVPWM. IET Power Electron. 2020, 13, 1033–1040. [Google Scholar] [CrossRef]
- Ibrahim, A.; Salem, M.; Kamarol, M.; Delgado, M.T.; Desa, M.K.M. Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends. IEEE Open J. Power Electron. 2024, 5, 414–435. [Google Scholar] [CrossRef]
- Yu, Z.; Long, J. Review on Advanced Model Predictive Control Technologies for High-Power Converters and Industrial Drives. Electronics 2024, 13, 4969. [Google Scholar] [CrossRef]
- Yusuf, S.S.; Kunya, A.B.; Abubakar, A.S.; Salisu, S. Review of load frequency control in modern power systems: A state-of-the-art review and future trends. Electr. Eng. 2025, 107, 5823–5848. [Google Scholar] [CrossRef]
- Zelba, M.; Deveikis, T.; Gudžius, S.; Jonaitis, A.; Bandza, A. Review of Power Control Methods for a Variable Average Power Load Model Designed for a Microgrid with Non-Controllable Renewable Energy Sources. Sustainability 2023, 15, 9100. [Google Scholar] [CrossRef]
- Scirè, D.; Lullo, G.; Vitale, G. A Quasi-Constant On-Time Control for SMPS with a Nonlinear Inductor Based on Power Switch Conduction Time Estimation. IEEE Trans. Ind. Inform. 2024, 21, 1419–1428. [Google Scholar] [CrossRef]
- Golovanov, D.; Gerada, D.; Sala, G.; Degano, M.; Trentin, A.; Connor, P.H.; Xu, Z.; Rocca, A.L.; Galassini, A.; Tarisciotti, L.; et al. 4-MW Class High-Power-Density Generator for Future Hybrid-Electric Aircraft. IEEE Trans. Transp. Electrif. 2021, 7, 2952–2964. [Google Scholar] [CrossRef]
- Gu, C.; Yan, H.; Yang, J.; Sala, G.; De Gaetano, D.; Wang, X.; Galassini, A.; Degano, M.; Zhang, X.; Buticchi, G. A Multiport Power Conversion System for the More Electric Aircraft. IEEE Trans. Transp. Electrif. 2020, 6, 1707–1720. [Google Scholar] [CrossRef]
- Marquez, A.; Monopoli, V.G.; Tcai, A.; Leon, J.I.; Buticchi, G.; Vazquez, S.; Liserre, M.; Franquelo, L.G. Discontinuous-PWM Method for Multilevel N-Cell Cascaded H-Bridge Converters. IEEE Trans. Ind. Electron. 2021, 68, 7996–8005. [Google Scholar] [CrossRef]
- Riccio, J.; Karamanakos, P.; Odhano, S.; Tang, M.; Nardo, M.D.; Tresca, G.; Zanchetta, P. Modulated Model-Predictive Integral Control Applied to a Synchronous Reluctance Motor Drive. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3000–3010. [Google Scholar] [CrossRef]
- Marquez, A.; Monopoli, V.G.; Leon, J.I.; Ko, Y.; Buticchi, G.; Vazquez, S.; Liserre, M.; Franquelo, L.G. Sampling-Time Harmonic Control for Cascaded H-Bridge Converters with Thermal Control. IEEE Trans. Ind. Electron. 2020, 67, 2776–2785. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scirè, D.; Vitale, G. Advanced Control Techniques for Power Converter and Drives. Electronics 2025, 14, 3710. https://doi.org/10.3390/electronics14183710
Scirè D, Vitale G. Advanced Control Techniques for Power Converter and Drives. Electronics. 2025; 14(18):3710. https://doi.org/10.3390/electronics14183710
Chicago/Turabian StyleScirè, Daniele, and Gianpaolo Vitale. 2025. "Advanced Control Techniques for Power Converter and Drives" Electronics 14, no. 18: 3710. https://doi.org/10.3390/electronics14183710
APA StyleScirè, D., & Vitale, G. (2025). Advanced Control Techniques for Power Converter and Drives. Electronics, 14(18), 3710. https://doi.org/10.3390/electronics14183710