Cognitive and Affective Reactions to Virtual Facial Representations in Cosmetic Advertising: A Comparison of Idealized and Naturalistic Features
Abstract
1. Introduction
2. Literature Review
2.1. Marketing Applications of Virtual Models and Controversies in Facial Feature Design
2.2. The Value of Visual Attention Mechanisms in Marketing Research
2.3. Mediating Pathways of Affective Cognition
3. Hypothesis Development
3.1. Consumers’ Visual Attention Preferences Toward Virtual Models with Distinct Facial Features
3.2. The Impact of Virtual Models’ Facial Features on Purchase Intention
3.3. Mediating Effects of Affective Resonance, Trustworthiness, Likability, and Expertise Perception
4. Experimental Process and Data Analysis
4.1. Eye-Tracking Experiment (Experiment 1)
4.1.1. Materials and Study Design
4.1.2. Procedure of Eye-Tracking Experiment
4.1.3. Determination of the Area of Interest
4.1.4. Result 1
4.1.5. Result 2
4.1.6. Result 3
4.1.7. Discussion of Eye-Tracking Experiment
4.2. Mediating Effects of Affective Cognition (Experiment 2)
4.2.1. Objectives
4.2.2. Procedure of Mediating Effect Experiment
4.2.3. Results
4.2.4. Discussion of Mediating Effect Experiment
5. Discussion
6. Conclusions
6.1. Theoretical Contributions
6.2. Practical Implications
6.3. Limitations and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keeling, K.; McGoldrick, P.; Beatty, S. Avatars as salespeople: Communication style, trust, and intentions. J. Bus. Res. 2010, 63, 793–800. [Google Scholar] [CrossRef]
- Gammoh, B.S.; Jiménez, F.R.; Wergin, R. Consumer attitudes toward human-like avatars in advertisements: The effect of category knowledge and imagery. Int. J. Electron. Commer. 2018, 22, 325–348. [Google Scholar] [CrossRef]
- Bélisle, J.F.; Bodur, H.O. Avatars as information: Perception of consumers based on their avatars in virtual worlds. Psychol. Mark. 2010, 27, 741–765. [Google Scholar] [CrossRef]
- Miao, F.; Kozlenkova, I.V.; Wang, H.; Xie, T.; Palmatier, R.W. An emerging theory of avatar marketing. J. Mark. 2022, 86, 67–90. [Google Scholar] [CrossRef]
- Lu, V.Q. Asian Cosmetics in Global Market: A Comparative Study of Internationalization of Japanese, Korean, and Chinese Companies; Harvard University: Cambridge, MA, USA, 2020. [Google Scholar]
- Reber, R.; Schwarz, N.; Winkielman, P. Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personal. Soc. Psychol. Rev. 2004, 8, 364–382. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.X.; Li, Y.; Li, X.; Yuan, J. The beauty premium of tour guides in the customer decision-making process: An AI-based big data analysis. Tour. Manag. 2022, 93, 104575. [Google Scholar] [CrossRef]
- Mori, M. The uncanny valley. Energy 1970, 7, 33–35. [Google Scholar]
- Zhang, N.; Fan, X.; He, L.; Cheng, X.; Zhang, L.; Liu, R. The impact of the Seller’s facial image on consumer purchase behavior in peer-to-peer accommodation platforms. J. Retail. Consum. Serv. 2024, 80, 103932. [Google Scholar] [CrossRef]
- Lai, Y.; Perminiene, M. Embracing imperfection: Contemporary fashion communication and consumer well-being. J. Fash. Mark. Manag. Int. J. 2020, 24, 685–703. [Google Scholar] [CrossRef]
- Holzwarth, M.; Janiszewski, C.; Neumann, M.M. The influence of avatars on online consumer shopping behavior. J. Mark. 2006, 70, 19–36. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, N.; Guo, Q. How do virtual streamers affect purchase intention in the live streaming context? A presence perspective. J. Retail. Consum. Serv. 2023, 73, 103356. [Google Scholar] [CrossRef]
- Orquin, J.L.; Loose, S.M. Attention and choice: A review on eye movements in decision making. Acta Psychol. 2013, 144, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Katz, M. CGI ‘Influencers’ Like Lil Miquela Are About to Flood Your Feeds. Wired 2018, 11, 2020. Available online: https://www.wired.com/story/lil-miquela-digital-humans (accessed on 2 April 2025).
- Franke, C.; Groeppel-Klein, A.; Müller, K. Consumers’ responses to virtual influencers as advertising endorsers: Novel and effective or uncanny and deceiving? J. Advert. 2023, 52, 523–539. [Google Scholar] [CrossRef]
- Callcott, M.F.; Lee, W.N. A content analysis of animation and animated spokes-characters in television commercials. J. Advert. 1994, 23, 1–12. [Google Scholar] [CrossRef]
- Garretson, J.A.; Burton, S. The role of spokescharacters as advertisement and package cues in integrated marketing communications. J. Mark. 2005, 69, 118–132. [Google Scholar] [CrossRef]
- Liu, F.; Wei, H.; Sun, Z.; Zhu, Z.; Chen, H.A. The influence of spokesperson choice and product newness on consumer purchase intention. J. Res. Interact. Mark. 2024, 19, 166–182. [Google Scholar] [CrossRef]
- Byun, K.J.; Ahn, S.J. A systematic review of virtual influencers: Similarities and differences between human and virtual influencers in interactive advertising. J. Interact. Advert. 2023, 23, 293–306. [Google Scholar] [CrossRef]
- Volles, B.K.; Park, J.; Van Kerckhove, A.; Geuens, M. How and when do virtual influencers positively affect consumer responses to endorsed brands? J. Bus. Res. 2024, 183, 114863. [Google Scholar] [CrossRef]
- Lou, C.; Kiew, S.T.J.; Chen, T.; Lee, T.Y.M.; Ong, J.E.C.; Phua, Z. Authentically fake? How consumers respond to the influence of virtual influencers. J. Advert. 2023, 52, 540–557. [Google Scholar] [CrossRef]
- Akhtar, N.; Hameed, Z.; Islam, T.; Pant, M.K.; Sharma, A.; Rather, R.A.; Kuzior, A. Avatars of influence: Understanding how virtual influencers trigger consumer engagement on online booking platforms. J. Retail. Consum. Serv. 2024, 78, 103742. [Google Scholar] [CrossRef]
- Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 2006, 57, 199–226. [Google Scholar] [CrossRef] [PubMed]
- Dion, K.; Berscheid, E.; Walster, E. What is beautiful is good. J. Personal. Soc. Psychol. 1972, 24, 285. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Cui, G.; Chung, Y.; Zheng, W. The faces of success: Beauty and ugliness premiums in e-commerce platforms. J. Mark. 2020, 84, 67–85. [Google Scholar] [CrossRef]
- Peng, L.; Wang, X.; Ying, S. The heterogeneity of beauty premium in China: Evidence from CFPS. Econ. Model. 2020, 90, 386–396. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Z.; Huang, Y.; Tu, H. Research on the uncanny valley effect in artificial intelligence news anchors. Multimed. Tools Appl. 2024, 83, 62581–62606. [Google Scholar]
- Schwind, V.; Wolf, K.; Henze, N. Avoiding the uncanny valley in virtual character design. Interactions 2018, 25, 45–49. [Google Scholar] [CrossRef]
- Milosavljevic, M.; Navalpakkam, V.; Koch, C.; Rangel, A. Relative visual saliency differences induce sizable bias in consumer choice. J. Consum. Psychol. 2012, 22, 67–74. [Google Scholar] [CrossRef]
- Zhang, J.N.; Du, L.; Xie, Y.; Zou, F.Y. A literature review of using eye tracking technology in fashion and product design. Appl. Mech. Mater. 2014, 536, 1662–1665. [Google Scholar] [CrossRef]
- Motoki, K.; Saito, T.; Onuma, T. Eye-tracking research on sensory and consumer science: A review, pitfalls and future directions. Food Res. Int. 2021, 145, 110389. [Google Scholar] [CrossRef]
- Wedel, M.; Pieters, R. A review of eye-tracking research in marketing. In Review of Marketing Research; Emerald Publishing Limited: Leeds, UK, 2017; pp. 123–147. [Google Scholar]
- Drusch, G.; Bastien, J.C.; Paris, S. Analysing eye-tracking data: From scanpaths and heatmaps to the dynamic visualisation of areas of interest. In Advances in Science, Technology, Higher Education and Society in the Conceptual Age: STHESCA; AHFE: Krakow, Poland, 2014; Volume 20, p. 25. [Google Scholar]
- Barbosa, A.A.L.; de Moura, J.A.; de Medeiros, D.D. Positioning of design elements on the packaging of frozen convenience food and consumers’ levels of attention: An experiment using pizza boxes. Food Qual. Prefer. 2021, 87, 104044. [Google Scholar] [CrossRef]
- Ozturk, E.; Kilic, B.; Cubero Dudinskaya, E.; Naspetti, S.; Solfanelli, F.; Zanoli, R. Message in a Bottle: An Exploratory Study on the Role of Wine-Bottle Design in Capturing Consumer Attention. Beverages 2023, 9, 36. [Google Scholar] [CrossRef]
- Mikalef, P.; Sharma, K.; Chatterjee, S.; Chaudhuri, R.; Parida, V.; Gupta, S. All eyes on me: Predicting consumer intentions on social commerce platforms using eye-tracking data and ensemble learning. Decis. Support Syst. 2023, 175, 114039. [Google Scholar] [CrossRef]
- Garretson, J.A.; Niedrich, R.W. Spokes-characters: Creating character trust and positive brand attitudes. J. Advert. 2004, 33, 25–36. [Google Scholar] [CrossRef]
- MacKenzie, S.B.; Lutz, R.J.; Belch, G.E. The role of attitude toward the ad as a mediator of advertising effectiveness: A test of competing explanations. J. Mark. Res. 1986, 23, 130–143. [Google Scholar]
- Holbrook, M.B.; Batra, R. Assessing the role of emotions as mediators of consumer responses to advertising. J. Consum. Res. 1987, 14, 404–420. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Holbrook, M.B. The chain of effects from brand trust and brand affect to brand performance: The role of brand loyalty. J. Mark. 2001, 65, 81–93. [Google Scholar] [CrossRef]
- Cheng, Y.; Wei, W.; Zhang, L. Seeing destinations through vlogs: Implications for leveraging customer engagement behavior to increase travel intention. Int. J. Contemp. Hosp. Manag. 2020, 32, 3227–3248. [Google Scholar] [CrossRef]
- Nock, M.K.; Wedig, M.M.; Holmberg, E.B.; Hooley, J.M. The emotion reactivity scale: Development, evaluation, and relation to self-injurious thoughts and behaviors. Behav. Ther. 2008, 39, 107–116. [Google Scholar] [CrossRef]
- Ohanian, R. Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness. J. Advert. 1990, 19, 39–52. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, X.; Cohen, J.; Mou, J. Human vs. AI: Understanding the impact of anthropomorphism on consumer response to chatbots from the perspective of trust and relationship norms. Inf. Process. Manag. 2022, 59, 102940. [Google Scholar] [CrossRef]
- Schouten, A.P.; Janssen, L.; Verspaget, M. Celebrity vs. Influencer endorsements in advertising: The role of identification, credibility, and Product-Endorser fit. In Leveraged Marketing Communications; Routledge: Oxford, UK, 2021; pp. 208–231. [Google Scholar]
- Englis, B.G.; Solomon, M.R.; Ashmore, R.D. Beauty before the eyes of beholders: The cultural encoding of beauty types in magazine advertising and music television. J. Advert. 1994, 23, 49–64. [Google Scholar] [CrossRef]
- Antioco, M.; Smeesters, D.; Boedec, A.L. Take your pick: Kate Moss or the girl next door? The effectiveness of cosmetics advertising. J. Advert. Res. 2012, 52, 15–30. [Google Scholar] [CrossRef]
- Landwehr, J.R.; Wentzel, D.; Herrmann, A. The tipping point of design: How product design and brands interact to affect consumers’ preferences. Psychol. Mark. 2012, 29, 422–433. [Google Scholar] [CrossRef]
- Wu, S.L.; Hsu, C.P. Role of authenticity in massively multiplayer online role playing games (MMORPGs): Determinants of virtual item purchase intention. J. Bus. Res. 2018, 92, 242–249. [Google Scholar] [CrossRef]
- Yang, T.; Lou, C.; Tandoc, E.C., Jr. Realistic skin vs. flawless skin: Explicating the appeal of retouch-free advertising among Chinese women. Int. J. Advert. 2023, 42, 1315–1351. [Google Scholar] [CrossRef]
- Perrett, D.I.; Lee, K.J.; Penton-Voak, I.; Rowland, D.; Yoshikawa, S.; Burt, D.M.; Henzi, S.P.; Castles, D.L.; Akamatsu, S. Effects of sexual dimorphism on facial attractiveness. Nature 1998, 394, 884–887. [Google Scholar] [CrossRef]
- Kotler, P.; Mantrala, M.K. Flawed products: Consumer responses and marketer strategies. J. Consum. Mark. 1985, 2, 27–36. [Google Scholar] [CrossRef]
- Lv, L.; Huang, M.; Guan, D.; Yang, K. Minor flaws are better: The positive effect of aesthetic imperfection about avatar endorsers on brand authenticity. J. Bus. Res. 2023, 166, 114125. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001, 2, 194–203. [Google Scholar] [CrossRef]
- Hoffman, J.E.; Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 1995, 57, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Etcoff, N. Survival of the Prettiest: The Science of Beauty; Anchor: New York, NY, USA, 2011. [Google Scholar]
- Vaitonytė, J.; Blomsma, P.A.; Alimardani, M.; Louwerse, M.M. Realism of the face lies in skin and eyes: Evidence from virtual and human agents. Comput. Hum. Behav. Rep. 2021, 3, 100065. [Google Scholar] [CrossRef]
- Sharma, M.; Vemuri, K. Accepting human-like avatars in social and professional roles. ACM Trans. Hum.-Robot. Interact. (THRI) 2022, 11, 1–19. [Google Scholar] [CrossRef]
- Poole, A.; Ball, L. Eye tracking in human-computer interaction and usability. In Encyclopedia of Human Computer Interaction; Editorial Idea Group Reference: Stockholm, Sweden, 2006; pp. 211–219. [Google Scholar]
- Eroglu, S.A.; Machleit, K.A.; Davis, L.M. Atmospheric qualities of online retailing: A conceptual model and implications. J. Bus. Res. 2001, 54, 177–184. [Google Scholar] [CrossRef]
- Bower, A.B. Highly attractive models in advertising and the women who loathe them: The implications of negative affect for spokesperson effectiveness. J. Advert. 2001, 30, 51–63. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, M. Online product presentation: The effect of product coordination and a model’s face. J. Res. Interact. Mark. 2012, 6, 59–72. [Google Scholar]
- MacDorman, K.F.; Chattopadhyay, D. Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition 2016, 146, 190–205. [Google Scholar] [CrossRef]
- Toh, W.L.; Lam, S.; Mangano, M.; Rossell, S.L. Multidimensional perfectionism and facial symmetry, attractiveness and approachability: Comparing those with high versus low dysmorphic concerns. Psychol. Rep. 2023, 128, 332941231205274. [Google Scholar] [CrossRef]
- Schiffman, L.G.; Kanuk, L.L. Consumer Behavior, 6th ed.; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Kwon, J.; Vogt, C.A. Identifying the role of cognitive, affective, and behavioral components in understanding residents’ attitudes toward place marketing. J. Travel Res. 2010, 49, 423–435. [Google Scholar] [CrossRef]
- Seymour, M.; Yuan, L.; Dennis, A.; Riemer, K. Facing the artificial: Understanding affinity, trustworthiness, and preference for more realistic digital humans. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020. [Google Scholar]
- Nisbett, R.E.; Peng, K.; Choi, I.; Norenzayan, A. Culture and systems of thought: Holistic versus analytic cognition. Psychol. Rev. 2001, 108, 291. [Google Scholar] [CrossRef]
- Kim, H.; Markus, H.R. Deviance or uniqueness, harmony or conformity? A cultural analysis. J. Personal. Soc. Psychol. 1999, 77, 785. [Google Scholar] [CrossRef]
- Newman, G.E.; Dhar, R. Authenticity is contagious: Brand essence and the original source of production. J. Mark. Res. 2014, 51, 371–386. [Google Scholar] [CrossRef]
- McDonnell, R.; Breidt, M.; Bülthoff, H.H. Render me real? Investigating the effect of render style on the perception of animated virtual humans. ACM Trans. Graph. (TOG) 2012, 31, 1–11. [Google Scholar] [CrossRef]
- Yao, Q.; Kuai, L.; Jiang, L. Effects of the anthropomorphic image of intelligent customer service avatars on consumers’ willingness to interact after service failures. J. Res. Interact. Mark. 2023, 17, 734–753. [Google Scholar] [CrossRef]
- Ho, H.F. The effects of controlling visual attention to handbags for women in online shops: Evidence from eye movements. Comput. Hum. Behav. 2014, 30, 146–152. [Google Scholar] [CrossRef]
- Ho, C.H.; Lu, Y.N. Can pupil size be measured to assess design products? Int. J. Ind. Ergon. 2014, 44, 436–441. [Google Scholar] [CrossRef]
- Jacob, R.J.; Karn, K.S. Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. In Mind’s Eye; North-Holland: Amsterdam, The Netherlands, 2003; pp. 573–605. [Google Scholar]
- Guo, F.; Liu, W.L.; Cao, Y.; Liu, F.T.; Li, M.L. Optimization design of a webpage based on Kansei engineering. Hum. Factors Ergon. Manuf. Serv. Ind. 2016, 26, 110–126. [Google Scholar] [CrossRef]
- Fernández-Martín, A.; Campo, S.; Gutiérrez-Tano, D.; Díaz-Armas, R.J. Optimizing online hotel ADS: The role of emotional and experiential images and banner placement in capturing visual attention. Int. J. Hosp. Manag. 2026, 132, 104361. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, K.; Wang, C. Way to success: Understanding top streamer’s popularity and influence from the perspective of source characteristics. J. Retail. Consum. Serv. 2022, 64, 102786. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Markus, H.R.; Kitayama, S. Cultural Variation in the Self-Concept; Springer: New York, NY, USA, 1991. [Google Scholar]
- Lee, E.-J. Character-based team identification and referent informational influence in computer-mediated communication. Media Psychol. 2007, 9, 135–155. [Google Scholar] [CrossRef]
Idealized Faces | Naturalistic Faces | t | df | p | |
---|---|---|---|---|---|
Total Fixation Duration (ms) | 3032.64 ± 1018.67 | 4031.49 ± 1187.41 | −7.69 | 407 | 0.000 ** |
Average of Number of Fixation Points | 11.67 ± 4.03 | 14.98 ± 4.55 | −7.10 | 407 | 0.000 ** |
Average Pupil Size (μm) | 1345.54 ± 338.04 | 1196.25 ± 326.08 | 20.11 | 407 | 0.000 ** |
Total Fixation Duration (ms) | Average of Number of Fixation Points | First Fixation Duration (ms) | ||
---|---|---|---|---|
Idealized | F | 125.93 | 160.54 | 14.61 |
p | 0.000 ** | 0.000 ** | 0.000 ** | |
Naturalistic | F | 38.91 | 39.09 | 19.32 |
p | 0.000 ** | 0.000 ** | 0.000 ** |
Idealized Faces | Naturalistic Faces | t | df | p | |
---|---|---|---|---|---|
Purchase Intention | 4.11 ± 1.61 | 4.80 ± 1.46 | 4.01 | 407 | <0.001 |
Minimum | Maximum | Mean | Standard Deviation | Skewness | Kurtosis | |
---|---|---|---|---|---|---|
Affective Resonance | 1 | 7 | 4.4712 | 1.41655 | −0.399 | −0.416 |
Trustworthiness | 1 | 7 | 4.6077 | 1.36202 | −0.405 | −0.295 |
Likability | 1 | 7 | 4.5039 | 1.36846 | −0.408 | −0.275 |
Expertise Perception | 1 | 7 | 4.4347 | 1.42177 | −0.323 | −0.491 |
Purchase Intention | 1 | 7 | 4.5147 | 1.40365 | −0.382 | −0.436 |
χ2 | df | χ2/df | GFI | AGFI | IFI | CFI | RMSEA | |
---|---|---|---|---|---|---|---|---|
Standard | 235.329 | 94 | 1–3 | ≥0.8 | ≥0.8 | ≥0.9 | ≥0.9 | ≤0.05 |
Actual value | 2.504 | 0.970 | 0.954 | 0.982 | 0.982 | 0.039 | ||
Decision | Good fitting |
Factor | Average Variance Extraction (AVE) Value | Combined Reliability (CR) Value |
---|---|---|
Affective Resonance | 0.653 | 0.849 |
Trustworthiness | 0.611 | 0.825 |
Likability | 0.652 | 0.882 |
Expertise Perception | 0.653 | 0.849 |
Purchase Intention | 0.643 | 0.844 |
Model Pathway | β | SE | 95%CI | Percent (%) | |
---|---|---|---|---|---|
LLCL | ULCL | ||||
Total effect | 0.402 | 0.028 | 0.340 | 0.467 | 100 |
Direct effect | |||||
Idealized/naturalistic→purchase intention | 0.103 | 0.027 | 0.048 | 0.165 | 25.623 |
Indirect effect | |||||
Idealized/naturalistic→affective resonance→purchase intention | 0.066 | 0.012 | 0.044 | 0.095 | 16.421 |
Idealized/naturalistic→trustworthiness→purchase intention | 0.044 | 0.011 | 0.027 | 0.068 | 10.952 |
Idealized/naturalistic→likability→purchase intention | 0.121 | 0.016 | 0.088 | 0.159 | 30.102 |
Idealized/naturalistic→expertise perception→purchase intention | 0.068 | 0.013 | 0.044 | 0.101 | 16.917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Zou, Y.; Tian, H.; Childs, P.R.N.; Tang, X.; Xu, J. Cognitive and Affective Reactions to Virtual Facial Representations in Cosmetic Advertising: A Comparison of Idealized and Naturalistic Features. Electronics 2025, 14, 3677. https://doi.org/10.3390/electronics14183677
Xu L, Zou Y, Tian H, Childs PRN, Tang X, Xu J. Cognitive and Affective Reactions to Virtual Facial Representations in Cosmetic Advertising: A Comparison of Idealized and Naturalistic Features. Electronics. 2025; 14(18):3677. https://doi.org/10.3390/electronics14183677
Chicago/Turabian StyleXu, Lu, Yixin Zou, Hannuo Tian, Peter R. N. Childs, Xiaoying Tang, and Ji Xu. 2025. "Cognitive and Affective Reactions to Virtual Facial Representations in Cosmetic Advertising: A Comparison of Idealized and Naturalistic Features" Electronics 14, no. 18: 3677. https://doi.org/10.3390/electronics14183677
APA StyleXu, L., Zou, Y., Tian, H., Childs, P. R. N., Tang, X., & Xu, J. (2025). Cognitive and Affective Reactions to Virtual Facial Representations in Cosmetic Advertising: A Comparison of Idealized and Naturalistic Features. Electronics, 14(18), 3677. https://doi.org/10.3390/electronics14183677