A Robust MPPT Algorithm for PV Systems Using Advanced Hill Climbing and Simulated Annealing Techniques
Abstract
1. Introduction
2. Performance and Modeling of PV Characteristics
- Short-Circuit Current: The maximum short-circuits current, which occurs when the unshaded modules are exposed to full irradiance.
- Step Currents: Unique short-circuits currents of shaded modules that receive varying levels of irradiance.
- Step Voltages: The cumulative open-circuit voltages of modules that continue to conduct at each step.
- Open-Circuit Voltage: The overall open-circuit voltage of the complete array, combining both shaded and unshaded modules.
3. Maximum Power Point Tracking
3.1. Hill Climbing Algorithm
- -
- Solution Perturbation: perturb the current solution (x) with a neighboring solution (x’).
- -
- Objective Function Evaluation: the change in the objective function is calculated:
- -
- Acceptance Criterion: the change in the objective function is evaluated to decide whether to accept :
- if , accept as the new solution.
- if , reject and keep the old solution .
3.2. Simulating Annealing
- -
- Solution Perturbation: perturb the current solution (x) with a new candidate solution (x′).
- -
- Objective Function Evaluation: the change in the objective function is calculated
- -
- Acceptance Criterion: the change in the objective function is evaluated to decide whether to accept :
- if , accept as the new solution.
- if , apply the Metropolis criterion by accepting with a probability P
- -
- Temperature Update: the temperature is updated by the cooling factor (α):
4. Proposed Hybrid MPPT Method
- -
- Exploration using a probabilistic acceptance function: Candidate solutions (duty cycles) are generated randomly within a predefined range, and worse solutions may still be accepted with a probability proportional to a cooling schedule.
- -
- Temperaturebased adaptation: The cooling rate controls the likelihood of escaping local maxima, preventing premature convergence.
- -
- Power storing mechanism: The algorithm keeps track of the highest power recorded at each environmental condition and recalls it when needed, ensuring stability and faster convergence when conditions fluctuate.
- -
- Adaptive step size in HC: If the change in power (ΔP) is significant, SA is applied with a dynamically determined perturbation size:
- -
- Objective Function Evaluation: The change in the objective function is calculated as:
- -
- Acceptance Criterion: The duty cycle D′ is accepted based on:
- If ΔE > 0, accept D′ as the new solution.
- If ΔE < 0, apply the Metropolis criterion with acceptance probability (P).
- -
- Temperature Update: The temperature is updated using:T = αT
- -
- Initialization: Define initial duty cycle D0, initial temperature T0, cooling schedule α, and perturbation ranges and .
- -
- Exploration using SA: Generate new duty cycle candidates probabilistically and evaluate power changes.
- -
- Power storage mechanism: If a new power peak is found, it is stored as a reference for future tracking.
- -
- Local refinement using adaptive HC: If the change in power is small, HC dynamically adjusts the duty cycle step size to reduce oscillations.
- -
- Temperature reinitialization: If weather conditions change significantly, the SA temperature is reset to allow further exploration.
- -
- Convergence check: The process continues until a stable MPP is reached.
5. Parameters Tuning
- -
- Define search mode with parameters lower and upper limit for each parameter: the maximum step size, minimum step size, cooling rate factor, and initial temperature
- -
- Randomly initialize the parameters within the search space.
- -
- Set the initial values to balance exploration (large step sizes) and convergence (small step sizes) and define the initial temperature and cooling rate for the SA algorithm.
- -
- The PV system evaluates the fitness function using MATLAB R2024a with Simulink (MathWorks, Natick, MA, USA) with the given set of parameters.
- -
- Computing the fitness according to the steadystate PV output power.
- -
- The fitness function is characterized as the negative of the average steadystate power, with the objective being to maximize power.
- -
- In each iteration, a new set of parameters is generated by making a small random change in the current parameters.
- -
- The fitness function is evaluated using the PV system MATLAB/SIMULINK file.
- -
- The new parameters are accepted if the fitness function improves. On the other hand, the worse solution is probabilistically accepted to avoid being trapped in local maxima.
- -
- According to the cooling rate, the temperature is updated.
6. Outcomes of the Simulation and Analysis of Results
6.1. Non-Partial Shading Conditions
6.2. Partial Shading Conditions
7. Practical Results
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, H.; Li, H.; Liu, G.; Ge, Y.; Shi, J.; Li, H.; Zhang, N. Energy Storage in High Variable Renewable Energy Penetration Power Systems: Technologies and Applications. CSEE J. Power Energy Syst. 2023, 9, 2099–2108. [Google Scholar]
- Saranyaa, J.S.; Fathima, A.P. A Comprehensive Survey on the Current Trends in Improvising the Renewable Energy Incorporated Global Power System Market. IEEE Access 2023, 11, 24016–24038. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Q.; Luo, D.; Jiang, R.; Chen, J. Global Energy Consumption Analysis Based on the Three-Dimensional Network Model. IEEE Access 2020, 8, 76313–76332. [Google Scholar] [CrossRef]
- Čeryová, D.; Bullová, T.; Turčeková, N.; Adamičková, I.; Moravčíková, D.; Bielik, P. Assessment of the Renewable Energy Sector Performance Using Selected Indicators in European Union Countries. Resources 2020, 9, 102. [Google Scholar] [CrossRef]
- Ghiasi, M.; Esmaeilnamazi, S.; Ghiasi, R.; Fathi, M. Role of Renewable Energy Sources in Evaluating Technical and Economic Efficiency of Power Quality. Technol. Econ. Smart Grids Sustain. Energy 2019, 5, 1. [Google Scholar] [CrossRef]
- Mathew, M.S.; Kolhe, M.L. Performance Modelling of Renewable Energy Systems Using kNN Algorithm for Smart Grid Applications. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Bol and Split, Croatia, 5–8 July 2022; pp. 1–4. [Google Scholar]
- Colucci, R.; Mahgoub, I.; Yousefizadeh, H.; Al-Najada, H. Survey of Strategies to Optimize Battery Operation to Minimize the Electricity Cost in a Microgrid With Renewable Energy Sources and Electric Vehicles. IEEE Access 2024, 12, 8246–8261. [Google Scholar] [CrossRef]
- Agency, I.E. Renewables 2023; IEA: Paris, France, 2023. [Google Scholar]
- Araoye, T.O.; Ashigwuike, E.C.; Mbunwe, M.J.; Bakinson, O.I.; Ozue, T.I. Techno-Economic Modeling and Optimal Sizing of Autonomous Hybrid Microgrid Renewable Energy System for Rural Electrification Sustainability using HOMER and Grasshopper Optimization Algorithm. Renew. Energy 2024, 229, 120712. [Google Scholar] [CrossRef]
- Shrivastava, A.; Sharma, R.; Saxena, M.K.; Shanmugasundaram, V.; Rinawa, M.L. Ankit Solar energy capacity assessment and performance evaluation of a standalone PV system using PVSYST. Mater. Today Proc. 2023, 80, 3385–3392. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; He, Q.; Liu, Z.; Wang, J.; Rao, Z.; Li, M.; Yu, X.; Zhang, W. A Dual-Feedback Adaptive Clone Selection Algorithm With Golden Sine Search for Parameter Identification of Photovoltaic Models. IEEE Access 2024, 12, 20341–20357. [Google Scholar] [CrossRef]
- Bordihn, S.; Fladung, A.; Schlipf, J.; Köntges, M. Machine Learning Based Identification and Classification of Field-Operation Caused Solar Panel Failures Observed in Electroluminescence Images. IEEE J. Photovolt. 2022, 12, 827–832. [Google Scholar] [CrossRef]
- Hanzaei, S.H.; Gorji, S.A.; Ektesabi, M. A Scheme-Based Review of MPPT Techniques With Respect to Input Variables Including Solar Irradiance and PV Arrays’ Temperature. IEEE Access 2020, 8, 182229–182239. [Google Scholar] [CrossRef]
- Lappalainen, K.; Valkealahti, S. Number of maximum power points in photovoltaic arrays during partial shading events by clouds. Renew. Energy 2020, 152, 812–822. [Google Scholar] [CrossRef]
- Kumar, M.; Panda, K.P.; Rosas-Caro, J.C.; Valderrabano-Gonzalez, A.; Panda, G. Comprehensive Review of Conventional and Emerging Maximum Power Point Tracking Algorithms for Uniformly and Partially Shaded Solar Photovoltaic Systems. IEEE Access 2023, 11, 31778–31812. [Google Scholar] [CrossRef]
- Abdullah, A.A.; Atallah, F.S.; Ahmed, O.K.; Alguburi, S. Effect of dusty weather on the performance of the PV/Trombe wall: Experimental assessment. Case Stud. Therm. Eng. 2022, 39, 102419. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Alajmi, B.N.; Abdelsalam, I.; Marei, M.I.; AlHajri, M. Advanced Maximum Power Point Tracker for PV Systems Under Dusty Weather Environments. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 61–71. [Google Scholar] [CrossRef]
- Ahmed, J.; Salam, Z. A Modified P&O Maximum Power Point Tracking Method With Reduced Steady-State Oscillation and Improved Tracking Efficiency. IEEE Trans. Sustain. Energy 2016, 7, 1506–1515. [Google Scholar]
- Killi, M.; Samanta, S. Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovoltaic Systems. IEEE Trans. Ind. Electron. 2015, 62, 5549–5559. [Google Scholar] [CrossRef]
- Jately, V.; Azzopardi, B.; Joshi, J.; Venkateswaran, V.B.; Sharma, A.; Arora, S. Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels. Renew. Sustain. Energy Rev. 2021, 150, 111467. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Wen, H.; Xiao, W. Comprehensive Studies on Operational Principles for Maximum Power Point Tracking in Photovoltaic Systems. IEEE Access 2019, 7, 121407–121420. [Google Scholar] [CrossRef]
- Huang, Y.P.; Huang, M.Y.; Ye, C.E. A Fusion Firefly Algorithm With Simplified Propagation for Photovoltaic MPPT Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2020, 11, 2641–2652. [Google Scholar] [CrossRef]
- Malla, S.G.; Malla, P.; Malla, J.M.R.; Singla, R.; Choudekar, P.; Koilada, R.; Sahu, M.K. Whale Optimization Algorithm for PV Based Water Pumping System Driven by BLDC Motor Using Sliding Mode Controller. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4832–4844. [Google Scholar] [CrossRef]
- Shams, I.; Mekhilef, S.; Tey, K.S. Improved-Team-Game-Optimization-Algorithm-Based Solar MPPT With Fast Convergence Speed and Fast Response to Load Variations. IEEE Trans. Ind. Electron. 2021, 68, 7093–7103. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. MPPT in Dynamic Condition of Partially Shaded PV System by Using WODE Technique. IEEE Trans. Sustain. Energy 2017, 8, 1204–1214. [Google Scholar] [CrossRef]
- Joisher, M.; Singh, D.; Taheri, S.; Espinoza-Trejo, D.R.; Pouresmaeil, E.; Taheri, H. A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions. IEEE Access 2020, 8, 38481–38492. [Google Scholar] [CrossRef]
- Sangrody, R.; Taheri, S.; Cretu, A.M.; Pouresmaeil, E. An Improved PSO-Based MPPT Technique Using Stability and Steady State Analyses Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2024, 15, 136–145. [Google Scholar] [CrossRef]
- Bollipo, R.B.; Mikkili, S.; Bonthagorla, P.K. Hybrid, optimal, intelligent and classical PV MPPT techniques: A review. CSEE J. Power Energy Syst. 2021, 7, 9–33. [Google Scholar]
- Ali, A.; Almutairi, K.; Padmanaban, S.; Tirth, V.; Algarni, S.; Irshad, K.; Islam, S.; Zahir, M.H.; Shafiullah, M.; Malik, M.Z. Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition–A Retrospection. IEEE Access 2020, 8, 127368–127392. [Google Scholar] [CrossRef]
- Lyden, S.; Galligan, H.; Haque, M.E. A Hybrid Simulated Annealing and Perturb and Observe Maximum Power Point Tracking Method. IEEE Syst. J. 2021, 15, 4325–4333. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Rahman, S.A.; Alajmi, B.N. Optimal controller tuning for P&O maximum power point tracking of PV systems using genetic and cuckoo search algorithms. Int. Trans. Electr. Energy Syst. 2021, 31, e12624. [Google Scholar]
- Song, T.; Williams, R.; Ottoson, L.; Mack, C.; Geisz, J.F.; Brewer, J.; Kopidakis, N. Impact of Irradiation-Induced Filter Heating on Calibration of NIR-Longpass-Filtered Reference Solar Cells. IEEE J. Photovolt. 2023, 13, 793–799. [Google Scholar] [CrossRef]
- Beinert, A.J.; Romer, P.; Heinrich, M.; Mittag, M.; Aktaa, J.; Neuhaus, D.H. The Effect of Cell and Module Dimensions on Thermomechanical Stress in PV Modules. IEEE J. Photovolt. 2020, 10, 70–77. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Rated power of the PV array, P (W) | 850 |
Boost inductor, L (H) | 0.3 |
Smoothing capacitor, C (μF) | 2200 |
Output voltage, V (V) | 300 |
Switching frequency, fs (kHz) | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alajmi, B.N.; Ahmed, N.A.; Abdelsalam, I.; Marei, M.I. A Robust MPPT Algorithm for PV Systems Using Advanced Hill Climbing and Simulated Annealing Techniques. Electronics 2025, 14, 3644. https://doi.org/10.3390/electronics14183644
Alajmi BN, Ahmed NA, Abdelsalam I, Marei MI. A Robust MPPT Algorithm for PV Systems Using Advanced Hill Climbing and Simulated Annealing Techniques. Electronics. 2025; 14(18):3644. https://doi.org/10.3390/electronics14183644
Chicago/Turabian StyleAlajmi, Bader N., Nabil A. Ahmed, Ibrahim Abdelsalam, and Mostafa I. Marei. 2025. "A Robust MPPT Algorithm for PV Systems Using Advanced Hill Climbing and Simulated Annealing Techniques" Electronics 14, no. 18: 3644. https://doi.org/10.3390/electronics14183644
APA StyleAlajmi, B. N., Ahmed, N. A., Abdelsalam, I., & Marei, M. I. (2025). A Robust MPPT Algorithm for PV Systems Using Advanced Hill Climbing and Simulated Annealing Techniques. Electronics, 14(18), 3644. https://doi.org/10.3390/electronics14183644