Capacitor-Less LDO with Fast Transient Response Implemented via Bulk-Driven Technique
Abstract
1. Introduction
2. An Overview of a Typical LDO
3. The Proposal Substrate-Driven LTE-LDO
3.1. The Overview
3.2. The Main Error Amplifier
3.2.1. The Slew Rate
3.2.2. DC Gain
3.2.3. The Output Current
3.2.4. Small-Signal Analysis
- (1)
- There is a Flipped Voltage Follower (FVF) structure [21] in the amplifier. When the input tube changes , the branch of the FVF structure will change about . To simplify the analysis, a change of 2 times is directly assumed in the flow chart.
- (2)
- and are the equivalent resistance and capacitance of point B. The size of is the feedback resistance , and the value of is small due to the small size of M10.
- (3)
- and are the equivalent capacitance and resistance of the amplifier output node. Since the amplifier drives the large-size load tube, the value of should not be ignored.
3.2.5. The Substrate Amplifier
3.2.6. The Frequency Response
3.2.7. The Main Loop
3.2.8. The Substrate Driving Loop
3.2.9. The Complete System
3.3. Summary
4. Layout Design and Verification
4.1. LTE-LDO Simulation Verification Results
4.1.1. DC Characteristics
- (1)
- The linear adjustment rate: Figure 14 shows the variation in the output voltage under different load currents when the input voltage changes from 2.5 V to 3.3 V. It can be observed that the best and worst adjustment efficiencies occur under light and heavy load currents, respectively. This is due to the negative correlation between the output resistance and the load current, leading to a low loop gain under light loads and a high loop gain under heavy loads.
- (2)
- The load adjustment rate is illustrated in Figure 15, which depicts the output voltage variation under different input voltages as the load current changes linearly from 100 μA to 1 mA. The simulation details the output voltage behavior across input voltages ranging from 2.5 V to 3.3 V in 0.1 V increments.
4.1.2. AC Characteristics
4.1.3. Transient Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bu, S.; Guo, J.; Leung, K.N. A 200-ps-response-time output-capacitorless low-dropout regulator with unity-gain bandwidth >100 MHz in 130-nm CMOS. IEEE Trans. Power Electron. 2017, 33, 3232–3246. [Google Scholar] [CrossRef]
- Tang, J.; Lee, J.; Roh, J. Low-power fast-transient capacitor-less LDO regulator with high slew-rate class-AB amplifier. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 462–466. [Google Scholar] [CrossRef]
- Li, G.; Qian, H.; Guo, J.; Mo, B.; Lu, Y.; Chen, D. DuAl active-feedback frequency compensation for output-capacitorless LDO with transient and stability enhancement in 65-nm CMOS. IEEE Trans. Power Electron. 2019, 35, 415–429. [Google Scholar] [CrossRef]
- Ming, X.; Kuang, J.J.; Liang, H.; Zhang, J.; Qin, Y.; Zhang, Z.W. A fast-transient low-dropout regulator with current-efficient super transconductance cell and dynamic reference control. IEEE Trans. Circuits Syst. I Reg. Pap. 2021, 68, 2354–2367. [Google Scholar] [CrossRef]
- Yu, L.; Yan, J.; Zhao, X.; Dong, L.; Zhong, L.; Liu, Y. A transient-enhanced low-dropout regulator with dynamic current boost technique voltage buffer. AEU-Int. J. Electron. Commun. 2022, 153, 154289. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Y.; Zhang, H.; Hu, Y.; Bao, Y.; Ye, L. A 4-μW Bandwidth/Power Scalable Delta–Sigma Modulator Based on Swing-Enhanced Floating Inverter Amplifiers. IEEE J. Solid-State Circuits 2021, 57, 709–718. [Google Scholar] [CrossRef]
- Nagateja, T.; Kumari, N.; Chen, K.H.; Lin, Y.H.; Lin, S.R.; Tsai, T.-Y. A 8-ns Settling Time Fully Integrated LDO with Dynamic Biasing and Bulk Modulation Techniques in 40 nm CMOS. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–4. [Google Scholar]
- Ma, G.; Zhan, C.; Zhang, Y. A transient-improved dynamic-replica LDO regulator with bulk modulation. In Proceedings of the 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), Shenzhen, China, 6–8 June 2018; pp. 1–2. [Google Scholar]
- Zhang, R.; Liu, Z.; Wang, X. A Capacitor-less LDO with Nested Miller Compensation and Bulk-Driven Techniques in 90 nm CMOS. In Proceedings of the 2021 4th International Conference on Circuits, Systems and Simulation (ICCSS), Kuala Lumpur, Malaysia, 26–28 May 2021; pp. 51–55. [Google Scholar]
- Lv, X.; Zhao, X.; Wang, Y.; Wen, B. An improved non-linear current recycling folded cascode OTA with cascode self-biasing. AEU-Int. J. Electron. Commun. 2019, 101, 182–191. [Google Scholar] [CrossRef]
- Chae, Y.; Han, G. Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE J. Solid-State Circuits 2009, 44, 458–472. [Google Scholar] [CrossRef]
- Venkatachala, P.K.; Leuenberger, S.; ElShater, A.; Lee, C.; Xu, Y.; Xiao, B. Process invariant biasing of ring amplifiers using deadzone regulation circuit. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Megawer, K.M.; Hussien, F.A.; Aboudina, M.M.; Mohieldin, A.N. A systematic design methodology for class-AB-style ring amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1169–1173. [Google Scholar] [CrossRef]
- Xiao, B.; Venkatachala, P.K.; Xu, Y.; ElShater, A.; Lee, C.Y.; Leuenberger, S. An 80 mA Capacitor-Less LDO with 6.5 µA Quiescent Current and No Frequency Compensation Using Adaptive-Deadzone Ring Amplifier. In Proceedings of the 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), Macau, Macao, 4–6 November 2019; pp. 39–42. [Google Scholar]
- Guo, Z.; Li, H.; Li, D.; Fan, S.; Gui, X.; Xue, Z. Topological classification-based splitting–combining methodology for analysis of complex multi-loop systems and its application in LDOs. IEEE Trans. Power Electron. 2018, 34, 7025–7039. [Google Scholar] [CrossRef]
- Galan, J.A.; Lopez-Martin, A.J.; Carvajal, R.G.; Ramirez-Angulo, J.; Rubia-Marcos, C. Super class-AB OTAs with adaptive biasing and dynamic output current scaling. IEEE Trans. Circuits Syst. I Reg. Pap. 2007, 54, 449–457. [Google Scholar] [CrossRef]
- Carvajal, R.G.; Ramírez-Angulo, J.; López-Martín, A.J.; Torralba, A.; Galan, J.A.G.; Carlosena, A. The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE Trans. Circuits Syst. I Reg. Pap. 2005, 52, 1276–1291. [Google Scholar] [CrossRef]
- Park, J.E.; Hwang, J.; Oh, J.; Jeong, D.K. 32.4 A 0.4-to-1.2 V 0.0057 mm2 55fs-Transient-FoM Ring-Amplifier-Based Low-Dropout Regulator with Replica-Based PSR Enhancement. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 492–494. [Google Scholar]
- Kim, S.J.; Chang, S.B.; Seok, M. A High PSRR, low ripple, temperature-compensated, 10-μA-Class Digital LDO Based on current-source power-FETs for a Sub-mW SoC. IEEE Solid-State Circuits Lett. 2021, 4, 88–91. [Google Scholar] [CrossRef]
- Lin, L.; Wang, B.; Rhee, W.; Wang, Z. An Analog-Assisted Digital LDO with 0.37 mV Output Ripple and 5500x Load Current Range in 180 nm CMOS. In Proceedings of the 2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Xi’an, China, 28–30 October 2022; pp. 106–107. [Google Scholar]
- Tan, X.L.; Koay, K.C.; Chong, S.S.; Chan, P.K. A FVF LDO Regulator with DuAl-Summed Miller Frequency Compensation for Wide Load Capacitance Range Applications. IEEE Trans. Circuits Syst. I Reg. Pap. 2014, 61, 1304–1312. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, Z.; Zhang, Q.; Zhao, X.; Chen, S.; Tang, F. A Low-Voltage and Power-Efficient Capless LDO Based on the Biaxially Driven Power Transistor Technique for Respiration Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Cho, G.H. High-gain wide-bandwidth capacitor-less low-dropout regulator (LDO) for mobile applications utilizing frequency response of multiple feedback loops. IEEE Trans. Circuits Syst. I Reg. Pap. 2016, 63, 46–57. [Google Scholar] [CrossRef]
- Huang, S.; Li, Y.; Mo, B.; Guo, J.; Chen, D. An Output-Capacitorless Adaptively Biased Low-Dropout Regulator with Maximum 132-MHz UGF and Without Minimum Loading Requirement. In Proceedings of the 2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington, VA, USA, 4–7 September 2018; pp. 206–212. [Google Scholar]
- Wang, Z.; Mirabbasi, S. A 0.58-to-0.9-V Input 0.53-V Output 2.4-μW Current-Feedback Low-Dropout Regulator With 99.8% Current Efficiency. IEEE Solid-State Circuits Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Xin, Y. Research and Design of High Efficiency Low Pressure Difference Linear Regulator for MEMS Seismometer. Master’s Thesis, China University of Geosciences, Beijing, China, 2021. [Google Scholar]
- Li, S.; Zhao, X.; Dong, L.; Yu, L.; Wang, Y. Design of a capacitor-less adaptively biased low dropout regulator using recycling folded cascode amplifier. AEU-Int. J. Electron. Commun. 2021, 135, 153745. [Google Scholar] [CrossRef]
- Han, X.; Ki, W.H.; Wu, L.; Gao, Y. Ultrahigh PSR Output-Capacitor-Free Adaptively Biased 2-Power-Transistor LDO With 200-mV Dropout. IEEE Solid-State Circuits Lett. 2022, 5, 106–109. [Google Scholar] [CrossRef]
- Bhattacharjee, I.; Chowdary, G. A 0.45 mV/V Line Regulation, 0.6 V Output Voltage, Reference-Integrated, Error Amplifier-Less LDO With a 5-Transistor Regulation Core. IEEE J. Solid-State Circuits 2023, 58, 3231–3241. [Google Scholar] [CrossRef]
- Kim, T.; Kim, B.; Roh, J. A 54-nA Quiescent Current Capless LDO With 39-dB PSRR at 1 MHz Using a Load-Tracking Bandwidth Extension Technique. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 1556–1560. [Google Scholar] [CrossRef]
Parameter | [24] | [25] | [26] | [27] | [28] | [29] | [30] | This Work |
---|---|---|---|---|---|---|---|---|
Year | 2018 | 2019 | 2021 | 2021 | 2022 | 2023 | 2024 | 2025 |
Size of process (μm) | 0.13 | 0.13 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
Power tube | PMOS | PMOS | PMOS | PMOS | PMOS | PMOS | PMOS | PMOS |
Dropout voltage (mV) | 200 | 200 | 160 | 200 | 200 | 100 | 200 | 200 |
Quiescent current (μA) | 3.2–208 | 4 | 26 | 10–50.25 | 24.2 | 0.22–660 | 0.054 | 37 |
Maximum load capacitance (pF) | 50 | 125 | 100 | 100 | 100 | 300 | 0.4 | 100 |
Load current (mA) | 1–25 | 0.1–3.1 | 0–50 | 0.1–100 | 10 | 0.01–30 | 10 | 0.1–100 |
Linear adjustment rate (mV/V) | 0.308 | 29 | 37.14 | 0.75 | - | 0.45 | 11.7 | 2.94 |
Load adjustment rate (μV/mA) | 124 | 1200 | 0.64 | 480 | 670 | 0.35 | - | 8.38 |
Output voltage variation (mV) | 112 | 210 | 245 | 296 | 271.3 | 215 | 600 | 320 |
Edge time (ns) | 100 | 200 | 300 | 500 | 100 | 100 | 15 | 100 |
Current efficiency (%) | 99.92 | 99.80 | 99.95 | 99.95 | 99.76 | 97.8 | - | 99.96 |
FOM2 (μV) | 663.0 | 775.38 | 382.2 | 448.5 | 656.5 | 128.3 | 90 | 119.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tang, S.; Zhao, X.; Liu, Y. Capacitor-Less LDO with Fast Transient Response Implemented via Bulk-Driven Technique. Electronics 2025, 14, 3617. https://doi.org/10.3390/electronics14183617
Li Y, Tang S, Zhao X, Liu Y. Capacitor-Less LDO with Fast Transient Response Implemented via Bulk-Driven Technique. Electronics. 2025; 14(18):3617. https://doi.org/10.3390/electronics14183617
Chicago/Turabian StyleLi, Yuxin, Shijindian Tang, Xiao Zhao, and Yanlong Liu. 2025. "Capacitor-Less LDO with Fast Transient Response Implemented via Bulk-Driven Technique" Electronics 14, no. 18: 3617. https://doi.org/10.3390/electronics14183617
APA StyleLi, Y., Tang, S., Zhao, X., & Liu, Y. (2025). Capacitor-Less LDO with Fast Transient Response Implemented via Bulk-Driven Technique. Electronics, 14(18), 3617. https://doi.org/10.3390/electronics14183617