Expensive Highly Constrained Antenna Design Using Surrogate-Assisted Evolutionary Optimization
Abstract
1. Introduction
- 1.
- A framework with a surrogate-assisted dynamic constrained multi-objective evolutionary algorithm is proposed to solve the expensive and highly constrained antenna problems.
- 2.
- A multi-layer perception is used to approximate EM evaluation to overcome the difficulty of high costs, and a dynamic scale-constrained boundary strategy is used to solve the issue of highly constraints.
- 3.
- Some numerical studies are carried out to verify the effectiveness of our method. The superior performance is confirmed not only for complex benchmark problems, but also for antenna examples in wideband antenna and microstrip antenna designs.
2. Basic Techniques
2.1. Constrained Optimization Techniques
2.2. Multi-Layer Perception Neural Network
3. Method
3.1. Algorithm Framework
Algorithm 1 The pseudo-code of the surrogate-assisted dynamic constrained multi-objective evolutionary algorithm framework (DCMOEA- MLP) |
Require: Initial a parent population, archive the population to a database, environment state , constrained boundary , niche radius , generation . Ensure: Best solution in the database. while The termination condition is not satisfied do Train an MLP model using all samples in the database; If the parent population is feasible then Scale the constrained boundary and niche radius , ; Generate offspring population by differential evolution (DE), and evaluate by MLP; Select parent population by NSGA-II; Select individuals in the first front and last front, and add these individuals into the database; ; end while return Best solution in the database. |
3.2. MLP-Driven Optimization
3.3. Parameter Settings
3.4. Benchmark Problem Verification
4. Antenna Configuration and Design
4.1. Example1: T-Shaped Waveguide Antenna Design
4.2. Example2: Microstrip Array Antenna Design
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bazziand, A.; Chafii, M. On outage-based beamforming design for dual-functional radar-communication 6G systems. IEEE Trans. Wirel. Commun. 2023, 22, 5598–5612. [Google Scholar]
- Saunders, S.R.; Aragón-Zavala, A.A. Antennas and Propagation for Wireless Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Pietrenko-Dabrowska, A.; Koziel, S. Accelerated Parameter Tuning of Antenna Structures by Means of Response Features and Principal Directions. IEEE Trans. Antennas Propag. 2023, 23, 8987–8999. [Google Scholar] [CrossRef]
- Vodvarka, K.; Jurisic Bellotti, M.; Vucic, M. Design of Uniformly Excited Unequally Spaced Antenna Arrays by Using Nonlinear Optimization. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1463–1467. [Google Scholar] [CrossRef]
- Pu, S.; Dong, W.; Xu, Z.; Zeng, H.; Yang, G. Joint Optimization of Domino Subarray Tiling and Generalized Directivity Based on Iterative Convex Relaxation. IEEE Antennas Wirel. Propag. Lett. 2023, 23, 483–487. [Google Scholar] [CrossRef]
- Rahmat-Samii, Y.; Kovitz, J.M.; Rajagopalan, H. Nature-inspired optimization techniques in communication antenna designs. Proc. IEEE 2012, 100, 2132–2144. [Google Scholar] [CrossRef]
- Peng, F.; Chen, X. A General Optimization Method for Complex Requirements Antenna Based on Balanced Demotion MOEA. IEEE Trans. Antennas Propag. 2023, 71, 4663–4674. [Google Scholar] [CrossRef]
- Wolff, M.W.; Nanzer, J.A. Application of Pseudoweights in Antenna Array Optimization and Design. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1478–1482. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, H.; Chugh, T.; Guo, D.; Miettinen, K. Data-Driven Evolutionary Optimization: An Overview and Case Studies. IEEE Trans. Evol. Comput. 2019, 23, 442–458. [Google Scholar] [CrossRef]
- Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M.; Tan, K.C. Surrogate-Assisted Evolutionary Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling. IEEE Trans. Evol. Comput. 2021, 25, 651–665. [Google Scholar] [CrossRef]
- Chugh, T.; Chakraborti, N.; Sindhya, K.; Jin, Y. A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Mater. Manuf. Process. 2017, 32, 1172–1178. [Google Scholar] [CrossRef]
- Guo, D.; Wang, X.; Gao, K.; Jin, Y.; Ding, J.; Chai, T. Evolutionary Optimization of High-Dimensional Multiobjective and Many-Objective Expensive Problems Assisted by a Dropout Neural Network. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 2084–2097. [Google Scholar] [CrossRef]
- Ghoni, R.; Dollah, M.; Sulaiman, A.; Ibrahim, F.M. Defect characterization based on eddy current technique: Technical review. Adv. Mech. Eng. 2014, 6, 182496. [Google Scholar] [CrossRef]
- D’Angelo, G.; Rampone, S. Feature extraction and soft computing methods for aerospace structure defect classification. Measurement 2016, 85, 192–209. [Google Scholar] [CrossRef]
- Yu, L.; Ren, C.; Meng, Z. A Surrogate-Assisted Differential Evolution with fitness-independent parameter adaptation for high-dimensional expensive optimization. Inf. Sci. 2024, 662, 120246. [Google Scholar] [CrossRef]
- Fu, K.; Cai, X.; Yuan, B.; Yang, Y.; Yao, X. An Efficient Surrogate Assisted Particle Swarm Optimization for Antenna Synthesis. IEEE Trans. Antennas Propag. 2022, 70, 4977–4984. [Google Scholar] [CrossRef]
- Yu, M.; Liang, J.; Zhao, K.; Wu, Z. An aRBF surrogate-assisted neighborhood field optimizer for expensive problems. Swarm Evol. Comput. 2022, 68, 100972. [Google Scholar] [CrossRef]
- Dong, J.; Li, Q.; Deng, L. Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model. AEU-Int. J. Electron. Commun. 2017, 72, 192–199. [Google Scholar] [CrossRef]
- Jiao, R.; Sun, Y.; Sun, J.; Jiang, Y.; Zeng, S. Antenna design using dynamic multi-objective evolutionary algorithm. IET Microwaves Antennas Propag. 2018, 12, 2065–2072. [Google Scholar] [CrossRef]
- Xu, Q.; Zeng, S.; Zhao, F.; Jiao, R.; Li, C. On Formulating and Designing Antenna Arrays by Evolutionary Algorithms. IEEE Trans. Antennas Propag. 2021, 69, 1118–1129. [Google Scholar] [CrossRef]
- Singh, P.; Rossi, M.; Couckuyt, I.; Deschrijver, D.; Rogier, H.; Dhaene, T. Constrained multi-objective antenna design optimization using surrogates. Int. J. Numer. Model. Electron. Netw. Devices Fields 2017, 30, e2248. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Coello, C.A.C. Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol. Comput. 2011, 1, 173–194. [Google Scholar] [CrossRef]
- Smitch, A.; Coit, D. Constraint-Handling Techniques-Penalty Functions. In Handbook of Evolutionary Computation (C 5.2); Oxford University Press: Bristol, UK, 1997. [Google Scholar]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Mallipeddi, R.; Suganthan, P.N. Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 2010, 14, 561–579. [Google Scholar] [CrossRef]
- Xu, T.; He, J.; Shang, C. Helper and equivalent objectives: Efficient approach for constrained optimization. IEEE Trans. Cybern. 2020, 52, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Jiao, R.; Li, C.; Li, X.; Alkasassbeh, J.S. A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization. IEEE Trans. Cybern. 2017, 47, 2678–2688. [Google Scholar] [CrossRef] [PubMed]
- Stein, M. Large sample properties of simulations using Latin hypercube sampling. Technometrics 1987, 29, 143–151. [Google Scholar] [CrossRef]
- Tian, J.; Tan, Y.; Zeng, J.; Sun, C.; Jin, Y. Multiobjective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. 2018, 23, 459–472. [Google Scholar] [CrossRef]
- Rahimi, A.; Recht, B. Random features for large-scale kernel machines. Adv. Neural Inf. Process. Syst. 2007, 20. [Google Scholar]
- Fabian, P.; Gael, V.; Alexandre, G.; Vincent, M. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Pratticò, D.; Laganà, F.; Oliva, G.; Fiorillo, A.S.; Pullano, S.A.; Calcagno, S.; Carlo, D.D.; Foresta, F.L. Integration of LSTM and U-Net models for monitoring electrical absorption with a system of sensors and electronic circuits. IEEE Trans. Instrum. Meas. 2025, 74, 2533311. [Google Scholar] [CrossRef]
- Liang, J.; Runarsson, T.P.; Mezura-Montes, E.; Clerc, M.; Deb, K. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. J. Appl. Mech. 2006, 41, 8–31. [Google Scholar]
- Zhang, Q.; Liu, W.; Tsang, E.; Virginas, B. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 2010, 14, 456–474. [Google Scholar]
- Chugh, T.; Jin, Y.; Miettinen, K.; Hakanen, J.; Sindhya, K. A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 2016, 22, 129–142. [Google Scholar]
- Bazzi, A.; Bomfin, R.; Mezzavilla, M.; Rangan, S.; Rappaport, T.; Chafii, M. Upper mid-band spectrum for 6G: Vision, opportunity and challenges. arXiv 2025, arXiv:2502.17914. [Google Scholar] [CrossRef]
Problem | DCMOEA-MLP | DCMOEA-NSGA-II | MOEA/D-EGO | K-RVEA | Optimal Value |
---|---|---|---|---|---|
g01 | −14.6321 ± 0.9972 | −14.9999 ± 4.8406 × 10−7 | −12.3645 ± 2.3527 | −14.2314 ± 1.5781 | −15.0 |
g02 | −0.3622 ± 0.0525 | −0.3649 ± 3.0781 × 10−9 | NAN | NAN | −0.8036 |
g03 | −0.8873 ± 0.2197 | −1.0004 ± 3.9600 × 10−8 | −0.6325 ± 1.3357 | −0.7921 ± 1.0341 | −1.0005 |
g04 | −30,660.6474 ± 9.0101 | −30,665.5386 ± 1.6023 × 10−7 | −30,612.1632 ± 20.8914 | −30,658.2153 ± 3.5478 | −30,665.5386 |
g05 | 5127.2106 ± 75.1616 | 5126.4967 ± 6.1202 × 10−10 | 5129.5647 ± 0.38652 | 5127.9231 ± 0.0745 | 5126.4967 |
g06 | −6865.7890 ± 234.8907 | −6961.8138 ± 5.2390 × 10−7 | −6843.2461 ± 30.7723 | −6861.6247 ± 5.6278 | −6961.8138 |
g07 | 39.5745 ± 10.1918 | 24.3084 ± 0.0013 | 78.6548 ± 5.5840 | 39.4257 ± 1.2374 | 24.3062 |
g08 | −0.0958 ± 0.0020 | −0.0958 ± 1.2412 × 10−17 | −0.0867 ± 0.3527 | −0.0.956 ± 0.0452 | −0.0958 |
g09 | 699.7206 ± 62.9436 | 680.6300 ± 8.6419 × 10−7 | 663.2352 ± 6.2365 | 698.2354 ± 2.3481 | 680.6300 |
g10 | 7625.9985 ± 18.6648 | 7050.7653 ± 1.8864 | 9358.5681 ± 50.6879 | 7612.2845 ± 17.6385 | 7049.2480 |
g11 | 0.7499 ± 0.0519 | 0.7499 ± 7.1412 × 10−8 | 0.7256 ± 0.2352 | 0.7496 ± 0.0698 | 0.7499 |
g12 | −0.9999 ± 7.2104 × 10−5 | −1.0 ± 0.000 | −0.9862 ± 0.3654 | −0.9996 ± 0.1243 | −1.0 |
g13 | 0.0539 ± 0.3322 | 0.0539 ± 7.6007 × 10−11 | 0.0492 ± 0.0145 | 0.0536 ± 0.2341 | 0.0539 |
g14 | −47.0343 ± 1.0447 | −47.7622 ± 0.0015 | −45.3251 ± 4.2561 | −46.8365 ± 2.3385 | −47.7648 |
g15 | 961.7133 ± 0.0414 | 961.7150 ± 3.5718 × 10−8 | 983.2531 ± 6.4789 | NAN | 961.7150 |
g16 | −1.9002 ± 0.0262 | −1.9051 ± 9.9201 × 10−10 | −1.6524 ± 3.7128 | −1.8978 ± 2.5482 | −1.9051 |
g17 | 8877.7411 ± 25.5827 | 8857.5082 ± 3.9241 | 8978.8293 ± 39.8123 | 8763.2548 ± 8.5824 | 8853.5396 |
g18 | −0.8744 ± 0.0620 | −0.8659 ± 3.3503 × 10−5 | −0.9243 ± 1.5263 | −0.8925 ± 1.8426 | −0.8660 |
g19 | 47.9198 ± 265.1475 | 32.6958 ± 0.01753 | 268.8541 ± 50.4821 | 62.5241 ± 4.5273 | 32.6555 |
g20 | NAN | NAN | NAN | NAN | NAN |
g21 | 196.2777 ± 36.2894 | 193.9998 ± 0.5339 | 325.2591 ± 34.2185 | 198.2541 ± 7.2745 | 193.7245 |
g22 | 274.8783 ± 4051.2878 | 9884.7652 ± 5871.2774 | NAN | NAN | 236.4309 |
g23 | −379.1627 ± 387.5497 | −340.4900 ± 44.4028 | NAN | NAN | −400.0550 |
g24 | −5.5078 ± 0.0669 | −5.5080 ± 2.1015 × 10−10 | −5.5012 ± 0.7824 | −5.5056 ± 0.1239 | −5.5080 |
Frequency | 1.0–10.0 GHz |
Input Impedance | 50 |
VSWR | ≤2.0 |
Scan angle | , |
Algorithm | DCMOEA-NSGA-II | DCMOEA-MLP |
---|---|---|
Number | 1338 | 60,000 |
Frequency | 2.5–2.8 GHz |
Input impedance | 50 |
S11 | ≤−15 dB |
Scan angle | , |
Algorithm | DCMOEA-NSGA-II | DCMOEA-MLP |
---|---|---|
Number | 12,659 | 100,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Zeng, S.; Li, C. Expensive Highly Constrained Antenna Design Using Surrogate-Assisted Evolutionary Optimization. Electronics 2025, 14, 3613. https://doi.org/10.3390/electronics14183613
Hu C, Zeng S, Li C. Expensive Highly Constrained Antenna Design Using Surrogate-Assisted Evolutionary Optimization. Electronics. 2025; 14(18):3613. https://doi.org/10.3390/electronics14183613
Chicago/Turabian StyleHu, Caie, Sanyou Zeng, and Changhe Li. 2025. "Expensive Highly Constrained Antenna Design Using Surrogate-Assisted Evolutionary Optimization" Electronics 14, no. 18: 3613. https://doi.org/10.3390/electronics14183613
APA StyleHu, C., Zeng, S., & Li, C. (2025). Expensive Highly Constrained Antenna Design Using Surrogate-Assisted Evolutionary Optimization. Electronics, 14(18), 3613. https://doi.org/10.3390/electronics14183613