A 100 MHz Bandwidth, 48.2 dBm IB OIP3, and 3.6 mW Reconfigurable MFB Filter Using a Three-Stage OPA
Abstract
1. Introduction
2. System Implementation
2.1. The MFB Filter Structure
2.2. Nonlinearity Analysis
2.3. The Proposed Operational Amplifier
2.3.1. The Design of the Proposed OPA
2.3.2. A Stability Analysis
2.4. The RC Tuning Circuit
3. Post-Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- 3GPP. NR; Base Station (BS) Radio Transmission and Reception, 3GPP TS 38.104, Version 18.5.0. 3rd Generation Partnership Project (3GPP). 2024. Available online: https://www.3gpp.org/dynareport/38104.htm (accessed on 31 August 2025).
- Tsividis, Y. Integrated Continuous-Time Filter Design. In Proceedings of the IEEE Custom Integrated Circuits Conference—CICC’93, San Diego, CA, USA, 9–12 May 1993. [Google Scholar] [CrossRef]
- Houfaf, F.; Egot, M.; Kaiser, A.; Cathelin, A.; Nauta, B. A 65nm CMOS 1-to-10GHz Tunable Continuous-Time Low-Pass Filter for High-Data-Rate Communications. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; pp. 362–364. [Google Scholar] [CrossRef]
- Algueta-Miguel, J.M.; De La Cruz Blas, C.A.; Lopez-Martin, A.J. Balanced Gm-C Filters with Improved Linearity and Power Efficiency. Int. J. Circuit Theory Appl. 2015, 43, 1147–1166. [Google Scholar] [CrossRef]
- Algueta-Miguel, J.M.; De la Cruz Blas, C.A.; Lopez-Martin, A.J. A 760μW 4th Order Butterworth FGMOS Gm-C Filter with Enhanced Linearity. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 277–280. [Google Scholar] [CrossRef]
- Le-Thai, H.; Nguyen, H.H.; Nguyen, H.N.; Cho, H.S.; Lee, J.S.; Lee, S.G. An IF Bandpass Filter Based on a Low Distortion Transconductor. IEEE J. Solid-State Circuits 2010, 45, 2250–2261. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Chang, S.; Shin, H. Low-Power CMOS Complex Bandpass Filter with Passband Flatness Tunability. Electronics 2020, 9, 494. [Google Scholar] [CrossRef]
- De Matteis, M.; Pipino, A.; Resta, F.; Pezzotta, A.; D’Amico, S.; Baschirotto, A. A 63-dB DR 22.5-MHz 21.5-dBm IIP3 Fourth-Order FLFB Analog Filter. IEEE J. Solid-State Circuits 2017, 52, 1977–1986. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, L.; Liao, H.; Huang, R.; Wang, Y. Highly Reconfigurable Analog Baseband for Multistandard Wireless Receivers in 65-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 296–300. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, B.; Huang, H. A 3rd/5th Order Active RC Chebyshev Analog Baseband Low-Pass Filter with Reconfigurable Bandwidth and Gain. IEEE Access 2021, 9, 129319–129328. [Google Scholar] [CrossRef]
- Ye, L.; Shi, C.; Liao, H.; Huang, R.; Wang, Y. Highly Power-Efficient Active-RC Filters with Wide Bandwidth-Range Using Low-Gain Push-Pull Opamps. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 95–107. [Google Scholar] [CrossRef]
- Zhan, J.H.C.; Carlton, B.R.; Taylor, S.S. A Broadband Low-Cost Direct-Conversion Receiver Front-End in 90 nm CMOS. IEEE J. Solid-State Circuits 2008, 43, 1132–1137. [Google Scholar] [CrossRef]
- Thandri, B.; Silva-Martinez, J. A Robust Feedforward Compensation Scheme for Multistage Operational Transconductance Amplifiers with NO Miller Capacitors. IEEE J. Solid-State Circuits 2003, 38, 237–243. [Google Scholar] [CrossRef]
- Rasekh, A.; Sharif Bakhtiar, M. Design of Low-Power Low-Area Tunable Active RC Filters. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 6–10. [Google Scholar] [CrossRef]
- Cao, W.; Gao, J.; Ma, T.; Ma, R.; Benosman, M.; Zhang, X. RoSE-Opt: Robust and Efficient Analog Circuit Parameter Optimization With Knowledge-Infused Reinforcement Learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2025, 44, 627–640. [Google Scholar] [CrossRef]
- Tang, C.C.; Lee, Y.B.; Sun, C.H.E.; Lin, C.C.; Syu, J.S.; Wu, M.H.; Chen, Y.; Chueh, T.C.; Bryant, C.; Collados, M.; et al. 21.4 An LTE-A Multimode Multiband RF Transceiver with 4RX/2TX Inter-Band Carrier Aggregation, 2-Carrier 4×4 MIMO with 256QAM and HPUE Capability in 28nm CMOS. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 350–352. [Google Scholar] [CrossRef]
- Thomas, L. The Biquad: Part I-Some Practical Design Considerations. IEEE Trans. Circuit Theory 1971, 18, 350–357. [Google Scholar] [CrossRef]
- Lei, L.; Tao, C.; Chen, Z.; Hong, Z.; Huang, Y. A Power-Efficient Active-RC Filter Using Passive Integrator and OTA with Push-Pull Output. IEEE Trans. Circuits Syst. I Regul. Pap. 2025, 1–11. [Google Scholar] [CrossRef]
- Harrison, J.; Weste, N. A 500 MHz CMOS Anti-Alias Filter Using Feed-Forward Op-Amps with Local Common-Mode Feedback. In Proceedings of the 2003 IEEE International Solid-State Circuits Conference, 2003, Digest of Technical Papers, ISSCC, San Francisco, CA, USA, 13 February 2003; Volume 1, pp. 132–483. [Google Scholar] [CrossRef]
- Zhou, D.; Briseno-Vidrios, C.; Jiang, J.; Park, C.; Liu, Q.; Soenen, E.G.; Kinyua, M.; Silva-Martinez, J. A 13-Bit 260MS/s Power-Efficient Pipeline ADC Using a Current-Reuse Technique and Interstage Gain and Nonlinearity Errors Calibration. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3373–3383. [Google Scholar] [CrossRef]
- Yun, S.; Cho, C.; Jo, S.; Kwon, K. A 2.7-dB NF 55-dBm IIP2 Blocker-Tolerant Receiver Front End Employing Dual RF and BB N-Path Filters for 5G New Radio Cellular Applications. IEEE Trans. Microw. Theory Tech. 2025, 73, 1558–1572. [Google Scholar] [CrossRef]
- Jung, H.; Utomo, D.R.; Han, S.K.; Kim, J.; Lee, S.G. An 80 MHz Bandwidth and 26.8 dBm OOB IIP3 Transimpedance Amplifier With Improved Nested Feedforward Compensation and Multi-Order Filtering. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3410–3421. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Qin, X.; Liu, Y.; Guo, M.; Sin, S.W.; Wang, G.; Lian, Y.; Qi, L. A Two-Channel Time-Interleaved Continuous-Time Third-Order CIFF-Based Delta-Sigma Modulator. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 4729–4741. [Google Scholar] [CrossRef]
- Wu, B.; Chiu, Y. A 40 nm CMOS Derivative-Free IF Active-RC BPF With Programmable Bandwidth and Center Frequency Achieving Over 30 dBm IIP3. IEEE J. Solid-State Circuits 2015, 50, 1772–1784. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J. A 20-kHz 16-MHz Programmable-Bandwidth 4th Order Active Filter Using Gain-Boosted Opamp With Negative Resistance in 65-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 182–186. [Google Scholar] [CrossRef]
- Park, C.; Tavares, Y.A.; Lee, J.; Wo, J.; Lee, M. 5th-Order Continuous-Time Low-Pass Filter Achieving 56 MHz Bandwidth 30.5 dBm IIP3 With a Novel Low-Distortion Amplifier. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1768–1772. [Google Scholar] [CrossRef]
- Pini, G.; Manstretta, D.; Castello, R. Analysis and Design of a 20-MHz Bandwidth, 50.5-dBm OOB-IIP3, and 5.4-mW TIA for SAW-Less Receivers. IEEE J. Solid-State Circuits 2018, 53, 1468–1480. [Google Scholar] [CrossRef]
- Ghasemi, A.R.; Aminzadeh, H.; Ballo, A. Ladder-Type Gm-C Filters With Improved Linearity. IEEE Access 2023, 11, 41503–41513. [Google Scholar] [CrossRef]
Gain (dB) | Gain (dB) | ||||
---|---|---|---|---|---|
0 | 909.1 | 101.0 | 10 | 759.7 | 351.4 |
1 | 899.1 | 113.6 | 11 | 738.1 | 405.9 |
2 | 888.2 | 127.9 | 12 | 715.3 | 473.1 |
3 | 876.2 | 144.1 | 13 | 691.2 | 558.0 |
4 | 863.2 | 162.6 | 14 | 666.1 | 669.3 |
5 | 849.0 | 183.6 | 15 | 640.1 | 822.4 |
6 | 833.7 | 207.8 | 16 | 613.1 | 1048.3 |
7 | 817.1 | 235.7 | 17 | 585.5 | 1419.3 |
8 | 799.2 | 268.1 | 18 | 557.3 | 2152.4 |
9 | 780.1 | 306.2 | 19 | 528.8 | 4333.4 |
Specification | With Feedforward (WIFF) | Without Feedforward (WOFF) |
---|---|---|
BW (MHz) | 2.14 | 1.33 |
UGB (GHz) | 2.14 | 0.61 |
DM phase margin (deg) | 56.54 | 54.61 |
DM gain margin (dB) | 12.6 | 47.24 |
CM phase margin (deg) | 72.65 | 77.38 |
CM gain margin (dB) | 8.9 | 13.92 |
Loop gain @100 MHz (dB) | 28.75 | 22.34 |
Process and Temperature | TT −40 °C | TT 80 °C 1 | TT 125 °C | SS −40 °C | SS 125 °C | FF −40 °C | FF 125 °C |
---|---|---|---|---|---|---|---|
BW before tuning (MHz) | 10.59 | 10.18 | 10.04 | 9.482 | 8.927 | 12.17 | 11.54 |
BW after tuning (MHz) | 10.38 | 10.18 | 10.24 | 10.53 | 10.37 | 10.15 | 9.954 |
Error (%) | 1.96 | 0 | 0.59 | 3.44 | 1.87 | 0.3 | 2.22 |
Process | TT | TT | TT | SS | SS | SS | FF | FF | FF | SF | SF | SF | FS | FS | FS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | −40 | 80 | 125 | −40 | 80 | 125 | −40 | 80 | 125 | −40 | 80 | 125 | −40 | 80 | 125 |
CM phase margin (deg) | 48 | 53 | 50 | 50 | 54 | 54 | 50 | 52 | 47 | 48 | 49 | 50 | 48 | 53 | 54 |
DM phase margin (deg) | 58 | 57 | 46 | 44 | 71 | 49 | 40 | 40 | 53 | 68 | 40 | 43 | 55 | 67 | 54 |
Reference | TCAS1’13 [11] a,h | JSSC’18 [27] a,h | TCAS2’19 [25] a,h | TCAS1’20 [22] a,h | TCAS2’21 [26] a,h | ACCESS’23 [28] b,h | TCAS1’25 [18] a,h | This Work b |
---|---|---|---|---|---|---|---|---|
Technology (nm) | 180 | 28 | 65 | 65 | 180 | 65 | 180 | 28 |
Topology | Active-RC | Active-RC | Active-RC | Active-RC | Active-RC | -C | Active-RC | Active-RC |
Order | 6 | 1 | 4 | 2 | 5 | 5 | 4 | 2 |
Supply (V) | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.0 | 1.8 | 1.8 |
Power (mW) | 4.1 | 5.4 | 19 | 14.2 | 14.7 | 0.167 | 5.4 | 3.6 c |
Bandwidth (MHz) | 240–500 | 20 | 0.02–16 | 80 | 56 | 1 | 50.5 | 10–100 |
Gain (dB) | - | 14 | - | 14 | −3–12 | - | 0 | 0–19 |
SFDR (dB) | 48.8 | 87.5 | 49.2 | 78.6 | - | 65.8 | 78.0 | |
OOB IIP3 (dBm) | - | 50.5 | - | 26.8 | 46.8 | - | 29.6 | 53.4 d |
IB IIP3 (dBm) | 11.3 | 31.5 | 22.1 | 19.4 | 30.5 | 9.36 | 36.0 | 48.2 d |
Input noise (nV/) | 13.1 | 4.7 | 44.6 | 0.74 | 126.1 | 193.4 | 23 | 14.8 |
Area (mm2) | 0.23 | 0.026 | 0.098 | 0.037 | 0.215 | 0.0164 | 0.13 | 0.036 c |
FoM (dB(J−1)) e | 163.5 f | 183.2 g | 144.5 g | 179.1 g | 162.8 g | 150.6 f | 171.5 f | 185.5 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Xie, T.; Wu, J.; Chen, Y. A 100 MHz Bandwidth, 48.2 dBm IB OIP3, and 3.6 mW Reconfigurable MFB Filter Using a Three-Stage OPA. Electronics 2025, 14, 3590. https://doi.org/10.3390/electronics14183590
Jiang M, Xie T, Wu J, Chen Y. A 100 MHz Bandwidth, 48.2 dBm IB OIP3, and 3.6 mW Reconfigurable MFB Filter Using a Three-Stage OPA. Electronics. 2025; 14(18):3590. https://doi.org/10.3390/electronics14183590
Chicago/Turabian StyleJiang, Minghao, Tianshuo Xie, Jiangfeng Wu, and Yongzhen Chen. 2025. "A 100 MHz Bandwidth, 48.2 dBm IB OIP3, and 3.6 mW Reconfigurable MFB Filter Using a Three-Stage OPA" Electronics 14, no. 18: 3590. https://doi.org/10.3390/electronics14183590
APA StyleJiang, M., Xie, T., Wu, J., & Chen, Y. (2025). A 100 MHz Bandwidth, 48.2 dBm IB OIP3, and 3.6 mW Reconfigurable MFB Filter Using a Three-Stage OPA. Electronics, 14(18), 3590. https://doi.org/10.3390/electronics14183590