A Pilot Study on Tissue Deformation Using an Integrated Sensor–Actuator Blood Collection Setup in Aquaculture (Salmo salar)
Abstract
1. Introduction
Study | Title | Methodology | Performance Metrics | Novelty of This Work |
---|---|---|---|---|
Mahvash et al. | Mechanics of dynamic needle insertion into a biological material [7] | Using the J integral method from fracture mechanics, rupture events are modeled as sudden crack extension that occurs. |
|
|
Smita et al. | Assessment of Tissue Damage due to Mechanical Stresses [5] |
|
|
|
Frank C.P. Yin et al. | An approach to quantification of biaxial tissue stress–strain data [6] |
|
|
|
Okamura et al. | Force modeling for needle insertion into soft tissue [9] |
|
|
|
Fauver M. E. et al. | Microfabricated cantilevers for measurement of subcellular and molecular forces [17] |
|
|
|
This Work | A pilot study of the tissue deformation with an integrated sensor–actuator-based blood collecting setup for aquaculture (Salmo salar) |
|
|
|
2. Materials
2.1. Actuator
2.2. Force Sensitive Resistor (FSR)
2.3. Force-Sensitive Capacitor (FSC)
2.4. Load Cell
2.5. Microcontrollers
3. Method
3.1. Needle–Tissue Contact Mechanics Model
3.2. Tissue Stress and Deformation Measurement with Simulation
4. Experimental Setup
4.1. Actuator-Based Control System
4.2. Simulation
5. Results and Discussion
5.1. Controlling Actuator Speed for Needle Insertion
5.2. Sensory Data and Force Profile Analysis
5.3. Force, Stress, and Deformation Measurement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casanovas, P.; Walker, S.P.; Johnston, H.; Johnston, C.; Symonds, J.E. Comparative assessment of blood biochemistry and hematology normal ranges between Chinook salmon (Oncorhynchus tshawytscha) from seawater and freshwater farms. Aquaculture 2021, 537, 736464. [Google Scholar] [CrossRef]
- Ataallahi, M.; Nejad, J.G.; Park, K.H. Selection of appropriate biomatrices for studies of chronic stress in animals: A review. J. Anim. Sci. Technol. 2022, 64, 621–639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Darr, M.; Epperson, W. Embedded sensor technology for real time determination of animal lying time. Comput. Electron. Agric. 2009, 66, 106–111. [Google Scholar] [CrossRef]
- Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431. [Google Scholar] [CrossRef]
- De, S.; Rosen, J.; Dagan, A.; Swanson, P.; Sinanan, M.; Hannaford, B. Assessment of Tissue Damage due to Mechanical Stresses. In Proceedings of the The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, Pisa, Italy, 20–22 February 2006; pp. 823–828. [Google Scholar] [CrossRef]
- Yin, C.P.F.; Chew, P.H.; Zeger, S.L. An approach to quantification of biaxial tissue stress-strain data. J. Biomech. 1986, 19, 27–37. [Google Scholar] [CrossRef]
- Mahvash, M.; Dupont, P.E. Mechanics of Dynamic Needle Insertion into a Biological Material. IEEE Trans. Biomed. Eng. 2010, 57, 934–943. [Google Scholar] [CrossRef]
- Dong-Su, K.; Yun-Jin, J.; Bong-Kee, L. A Shanmugasundaram, L Dong-Weon, Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sens. Actuators B Chem. 2017, 240, 566–572. [Google Scholar] [CrossRef]
- Okamura, A.M.; Simone, C.; O’Leary, M.D. Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 2004, 51, 1707–1716. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, R.; Alfano, L.; Petralia, P. Ethics in aquaculture: Animal welfare and environmental sustainability. J. Prev. Med. Hyg. 2024, 64, E443–E447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griebel, A.; Novak, T.; Butz, K.D.; Harris, K.; Kornokovich, A.; Chiappetta, M.; Neu, C.P. Prestress as an Optimal Biomechanical Parameter for Needle Penetration and Formulation Injection. In Proceedings of the ASME 2011 Summer Bioengineering Conference, SBC 2011, Farmington, PA, USA, 22–25 June 2011. [Google Scholar] [CrossRef]
- Alekya, B.; Rao, S.; Hardik Pandya, J. Engineering approaches for characterizing soft tissue mechanical properties: A review. Clin. Biomech. 2019, 69, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Mahvash, M.; Dupont, P.E. Fast needle insertion to minimize tissue deformation and damage. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3097–3102. [Google Scholar] [CrossRef]
- Jiang, S.; Li, P.; Yu, Y.; Liu, J.; Yang, Z. Experimental study of needle–tissue interaction forces: Effect of needle geometries, insertion methods and tissue characteristics. J. Biomech. 2014, 47, 3344–3353. [Google Scholar] [CrossRef]
- Pollard, S.; Anderson, J.; Bah, F.; Mateus, M.; Sidhu, M.; Simmons, D. Non-Lethal Blood Sampling of Fish in the lab and Field with Methods for Dried Blood Plasma SpotOmic Analyses. Front. Genet. 2022, 13, 795348. [Google Scholar] [CrossRef]
- Balchen, J.G. Modeling, Prediction, and Control of Fish Behavior. In Advances in Theory and Application; Leondes, C.T., Ed.; Control and Dynamic Systems; Academic Press: Cambridge, MA, USA, 1979; pp. 99–146. [Google Scholar] [CrossRef]
- Fauver, M.E.; Dunaway, D.L.; Lilienfeld, D.H.; Craighead, H.G.; Pollack, G.H. Microfabricated cantilevers for measurement of subcellular and molecular forces. IEEE Trans. Biomed. Eng. 1998, 45, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Føre, M.; Frank, K.; Norton, T.J.; Svendsen, E. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- DiMaio, S.; Salcudean, S. Interactive simulation of needle insertion models. IEEE Trans. Biomed. Eng. 2005, 52, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Brett, P.; Harrison, A.; Thomas, T. Schemes for the identification of tissue types and boundaries at the tool point for surgical needles. IEEE Trans. Inf. Technol. Biomed. 2000, 4, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Washio, T.; Audette, M.; Mizuhara, K. A Model for Relations Between Needle Deflection, Force, and Thickness on Needle Penetration. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2001; Niessen, W.J., Viergever, M.A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; pp. 966–974. [Google Scholar] [CrossRef]
- DiMaio, S.; Salcudean, S. Needle insertion modeling and simulation. IEEE Trans. Robot. Autom. 2003, 19, 864–875. [Google Scholar] [CrossRef]
- Alterovitz, R.; Goldberg, K.; Pouliot, J.; Taschereau, R.; Hsu, I.-C. Needle insertion and radioactive seed implantation in human tissues: Simulation and sensitivity analysis. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 2, pp. 1793–1799. [Google Scholar] [CrossRef]
- Webster, R.J.; Memisevic, J.; Okamura, A.M. Design Considerations for Robotic Needle Steering. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 3588–3594. [Google Scholar] [CrossRef]
- Casas, C.; Martinez, O.; Guillen, M.D.; Pin, C.; Salmeron, J. Textural properties of raw Atlantic salmon (Salmo salar) at three points along the fillet, determined by different methods. Food Control 2006, 17, 511–515. [Google Scholar] [CrossRef]
- Torstensen, B.E.; Bell, J.G.; Rosenlund, G.; Henderson, R.J.; Graff, I.E.; Tocher, D.R.; Lie, Ø.; Sargent, J.R. Tailoring of Atlantic Salmon (Salmo salar L.) Flesh Lipid Composition and Sensory Quality by Replacing Fish Oil with a Vegetable Oil Blend. J. Agric. Food Chem. 2006, 53, 10166–10178. [Google Scholar] [CrossRef]
- Rørå, A.; Birkeland, S.; Hultmann, L.; Rustad, T.; Skåra, T.; Bjerkeng, B. Quality characteristics of farmed Atlantic salmon (Salmo salar) fed diets high in soybean or fish oil as affected by cold-smoking temperature. LWT—Food Sci. Technol. 2005, 38, 201–211. [Google Scholar] [CrossRef]
- Bendiksen, E.Å.; Arnesen, A.M.; Jobling, M. Effects of dietary fatty acid profile and fat content on smolting and seawater performance in Atlantic salmon (Salmo salar L.). Aquaculture 2003, 225, 149–163. [Google Scholar] [CrossRef]
- Chen, S.; Hirota, N.; Okuda, M.; Takeguchi, M.; Kobayashi, H.; Hanagata, N.; Ikoma, T. Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields. Acta Biomater. 2011, 7, 644–652. [Google Scholar] [CrossRef]
- Al-Safadi, S.; Hutapea, P. A study on modeling the deflection of surgical needle during insertion into multilayer tissues. J. Mech. Behav. Biomed. Mater. 2023, 146, 106071. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ebrahimian, A.; Maftoon, N. Finite-Element Modelling of Needle-Tissue Interactions. Arch. Comput. Methods Eng. 2024, 31, 1363–1404. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Xiao, A.; Sun, W.; Wang, H.; Wang, X.; Zhou, Y.; Li, C.; Li, J.; Wang, Y.; et al. Analytical methods in studying cell force sensing: Principles, current technologies and perspectives. Regen. Biomater. 2025, 12, rbaf007. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, R.; Lourdu, L.; Sathyan, A. Design, development, and deployment of a sensor-based aquaculture automation system. Aquac. Int. 2024, 32, 6431–6447. [Google Scholar] [CrossRef]
Medium | Young’s Modulus (Pascal) | Poisson’s Ratio | Density (g/m3) |
---|---|---|---|
Needle | 200 × 108 | 0.27 | 0.0078 |
Salmon skin | 1.9 × 108 | 0.30 | 1.15 |
Salmon tissue | 10,000 | 0.47 | 1.06 |
Salmon fat | 10,000 | 0.47 | 0.90 |
Tissue Layer | Metric | Mean Value (N) | Standard Deviation (N) | Coefficient of Variation (%) |
---|---|---|---|---|
Skin | Peak Force | 0.25 | 0.02 | 8.0 |
Fat | Peak Force | 0.55 | 0.07 | 12.7 |
Muscle | Peak Force | 0.65 | 0.03 | 4.6 |
Skin | Deformation | 1.0 | 0.15 | 15.0 |
Fat | Deformation | 2.8 | 0.19 | 6.8 |
Muscle | Deformation | 5.8 | 0.41 | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiquee, I.; Ashad, M.E.A.; Jalal, A.H. A Pilot Study on Tissue Deformation Using an Integrated Sensor–Actuator Blood Collection Setup in Aquaculture (Salmo salar). Electronics 2025, 14, 3510. https://doi.org/10.3390/electronics14173510
Siddiquee I, Ashad MEA, Jalal AH. A Pilot Study on Tissue Deformation Using an Integrated Sensor–Actuator Blood Collection Setup in Aquaculture (Salmo salar). Electronics. 2025; 14(17):3510. https://doi.org/10.3390/electronics14173510
Chicago/Turabian StyleSiddiquee, Ishrak, Md Ebne Al Ashad, and Ahmed Hasnain Jalal. 2025. "A Pilot Study on Tissue Deformation Using an Integrated Sensor–Actuator Blood Collection Setup in Aquaculture (Salmo salar)" Electronics 14, no. 17: 3510. https://doi.org/10.3390/electronics14173510
APA StyleSiddiquee, I., Ashad, M. E. A., & Jalal, A. H. (2025). A Pilot Study on Tissue Deformation Using an Integrated Sensor–Actuator Blood Collection Setup in Aquaculture (Salmo salar). Electronics, 14(17), 3510. https://doi.org/10.3390/electronics14173510