A Residential Droop-Controlled AC Nanogrid with Power Quality Enhancement
Abstract
1. Introduction
- The proposed system is tailored to residential nanogrid applications, operating entirely on primary droop control and eliminating reliance on secondary or tertiary control layers and communication infrastructure which is a critical advantage for small-scale, autonomous systems.
- The architecture uses a 2-level voltage source inverter (2L VSI) for voltage stability at the PCC, and a 3-level T-type inverter (3L T-type) that is strategically connected directly to the non-linear load. This novel configuration allows the T-type inverter to participate in both active power sharing and harmonic compensation, supplying the required current and harmonic components to non-linear loads. This approach isolates harmonic pollution at the PCC, maintaining sinusoidal voltage and current.
2. System Description
2.1. Power System
2.2. Control System
2.2.1. Droop Control
2.2.2. Virtual Impedance Loop
2.2.3. Proportional-Resonant Controller
2.2.4. Deadbeat Current Control for 3L T-Type Inverter
2.2.5. Compensation Strategy
3. Simulation Results
3.1. Stage A
3.2. Stage B
3.3. Stage C
3.4. Stage D
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos, G.V.; Parreiras, T.M.; Zhao, F.; Wang, X.; C.Filho, B.D.J. A Zero Harmonic Distortion Grid-Connected Grid-Forming Converter for Battery Energy Storage System Applications. In Proceedings of the Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition-APEC, Atlanta, GA, USA, 16–20 March 2025; pp. 1615–1621. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Q.; Wang, K.; Zhao, X.; Huang, B.; Xin, Q. Grid-Forming Control Based on Capacitor Voltage Synchronization for Modular Multilevel Converter Under Weak Grid Condition. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Chicago, IL, USA, 3–6 November 2024. [Google Scholar] [CrossRef]
- Ramos, G.V.; Parreiras, T.M.; Filho, B.D.J.C. A Three-Level Zero Harmonic Distortion Grid-Forming Converter For Medium Voltage Islanded Microgrids. In Proceedings of the 2024 Energy Conversion Congress & Expo Europe (ECCE Europe), Darmstadt, Germany, 2–6 September 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Barrero-Gonzalez, F.; Roncero-Clemente, C.; Gutierrez-Escalona, J.; Milanes-Montero, M.I.; Gonzalez-Romera, E.; Romero-Cadaval, E. Three-Level T-Type Quasi-Z Source PV Grid-Tied Inverter with Active Power Filter Functionality Under Distorted Grid Voltage. IEEE Access 2022, 10, 44503–44516. [Google Scholar] [CrossRef]
- Kanase, D.B.; Jadhav, S.P.; Patil, D.P.; Prasad, S.; Kadam, S.; Patil, D.P. Energy Management Using Smart Inverter. In Proceedings of the 2024 International Conference on Intelligent Systems and Advanced Applications, ICISAA 2024, Pune, India, 25–26 October 2024. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Madureira, A.; Gil, N.; Resende, F. Operation of Multi-Microgrids. In Microgrids; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2013; pp. 165–205. [Google Scholar] [CrossRef]
- Barnes, M.; Kondoh, J.; Asano, H.; Oyarzabal, J.; Ventakaramanan, G.; Lasseter, R.; Hatziargyriou, N.; Green, T. Real-World MicroGrids-An Overview. In Proceedings of the 2007 IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 16–18 April 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Canizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Elewa, K.; Alhasheem, M.; Elhelw, H.M. Microgrid Applications: Effects of Communication Systems on Secondary Control Performance. In Proceedings of the 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE 2023, Moscow, Russia, 16–18 March 2023. [Google Scholar] [CrossRef]
- Peyghami, S.; Davari, P.; Mokhtari, H.; Loh, P.C.; Blaabjerg, F. Synchronverter-Enabled DC Power Sharing Approach for LVDC Microgrids. IEEE Trans. Power Electron. 2017, 32, 8089–8099. [Google Scholar] [CrossRef]
- Peyghami, S.; Davari, P.; Mokhtari, H.; Blaabjerg, F. Decentralized Droop Control in DC Microgrids Based on a Frequency Injection Approach. IEEE Trans. Smart Grid 2019, 10, 6782–6791. [Google Scholar] [CrossRef]
- Pogaku, N.; Prodanović, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef]
- Jafari, M.; Peyghami, S.; Mokhtari, H.; Blaabjerg, F. Enhanced Frequency Droop Method for Decentralized Power Sharing Control in dc Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1290–1301. [Google Scholar] [CrossRef]
- Roncero-Clemente, C.; Husev, O.; Romero-Cadaval, E.; Martins, J.; Vinnikov, D.; Milanes-Montero, M. Three-phase three-level neutral-point-clamped qZ source inverter with active filtering capabilities. In Proceedings of the 2015 9th International Conference on Compatibility and Power Electronics (CPE), Costa da Caparica, Portugal, 24–26 June 2015; pp. 216–220. [Google Scholar] [CrossRef]
- Montero, M.I.M.; Cadaval, E.R.; González, F.B. Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Trans. Power Electron. 2007, 22, 229–236. [Google Scholar] [CrossRef]
- Samadhiya, A.; Namrata, K. A multi objective control technique for interfacing hybrid renewable energy sources in an islanded microgrid subsequent to unbalanced and non linear load conditions. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wu, J.; Liu, J.; Huang, J. On control strategy of cascaded H-bridge multilevel converter with fluctuating output voltage. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 912–917. [Google Scholar] [CrossRef]
- Khan, M.H.; Zulkifli, S.A.; Tutkun, N.; Şimşir, M. Progressing Towards Sustainability: Power-Sharing Control Topologies for Microgrids with Parallel-Connected Inverters for Grid Stability. Sustainability 2025, 17, 4277. [Google Scholar] [CrossRef]
- Ali, S.; Rodriguez, S.B.; Khan, M.M.; Corcoles, F.; Byun, Y.C.; Guerrero, J.M. Series-Cascaded AC Microgrids: An Inclusive Review of Architectures and Control Methodologies. IEEE Access 2025, 13, 65016–65039. [Google Scholar] [CrossRef]
- Poonahela, I.; Krama, A.; Bayhan, S.; Fesli, U.; Shadmand, M.B.; Abu-Rub, H.; Begovic, M.M. Hierarchical Model-Predictive Droop Control for Voltage and Frequency Restoration in AC Microgrids. IEEE Open J. Ind. Electron. Soc. 2023, 4, 85–97. [Google Scholar] [CrossRef]
- Olajube, A.; Omiloli, K.; Vedula, S.; Anubi, O.M. Decentralized Droop-based Finite-Control-Set Model Predictive Control of Inverter-based Resources in Islanded AC Microgrid. IFAC-PapersOnLine 2024, 58, 384–389. [Google Scholar] [CrossRef]
- Lee, W.G.; Kim, H.M. Deep Reinforcement Learning-Based Dynamic Droop Control Strategy for Real-Time Optimal Operation and Frequency Regulation. IEEE Trans. Sustain. Energy 2024, 16, 284–294. [Google Scholar] [CrossRef]
- Shahgholian, G.; Moradian, M.; Fathollahi, A. Droop control strategy in inverter-based microgrids: A brief review on analysis and application in islanded mode of operation. IET Renew. Power Gener. 2025, 19, e13186. [Google Scholar] [CrossRef]
- Pena, J.C.U.; Silva, J.A.A.; Dias, M.P.; Damasceno, D.P.; Santos, L.H.S.; Pomilio, J.A. Droop-based Control Strategy to operate a DC Nanogrid under the Net Zero Energy Concept. Eletrônica Potência 2025, 30, e202529. [Google Scholar] [CrossRef]
- Chen, F.; Burgos, R.; Boroyevich, D.; Vasquez, J.C.; Guerrero, J.M. Investigation of Nonlinear Droop Control in DC Power Distribution Systems: Load Sharing, Voltage Regulation, Efficiency, and Stability. IEEE Trans. Power Electron. 2019, 34, 9407–9421. [Google Scholar] [CrossRef]
- John, B.; Ghosh, A.; Zare, F. Droop control in low voltage islanded microgrids for sharing nonlinear and unbalanced loads. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Varun, M.; Shukla, K.; Maheshwari, R.; Jain, A.K. A new hybrid PWM for two parallel connected interleaved two-level inverter to reduce output current ripple. In Proceedings of the 2017 IEEE 7th International Conference on Power and Energy Systems (ICPES), Toronto, ON, Canada, 1–3 November 2017; pp. 74–79. [Google Scholar] [CrossRef]
- Kumar, R.; Pathak, M.K. Distributed droop control of dc microgrid for improved voltage regulation and current sharing. IET Renew. Power Gener. 2020, 14, 2499–2506. [Google Scholar] [CrossRef]
- Salehi, N.; Martinez-Garcia, H.; Velasco-Quesada, G.; Guerrero, J.M. A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids. IEEE Access 2022, 10, 15935–15955. [Google Scholar] [CrossRef]
- Kumar, D.; Sharma, Y.; Singh, A.; Samanta, S. Control Strategies for 3L-T-Type Inverter in Islanded and Grid-Tied Modes Using Controller-Hardware in the Loop. In Proceedings of the 2024 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mangalore, India, 18–21 December 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Lak, M.; Chuang, B.R.; Lee, T.L. A Common-Mode Voltage Elimination Method with Active Neutral Point Voltage Balancing Control for Three-Level T-Type Inverter. IEEE Trans. Ind. Appl. 2022, 58, 7499–7514. [Google Scholar] [CrossRef]
- EN 50160; Voltage Characteristics of Electricity Supplied by Public Electricity Networks. European Committee for Electrotechnical Standardization (CENELEC): Brussels, Belgium, 2010.
- Roasto, I.; Blinov, A.; Vinnikov, D.; MacKay, L.; Jalakas, T. DC Droop Control Strategies and Tuning Principles. In Proceedings of the 2023 IEEE 64th Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2023-Proceedings, Riga, Latvia, 9–11 October 2023. [Google Scholar] [CrossRef]
- Vasquez, J.C.; Guerrero, J.M.; Savaghebi, M.; Eloy-Garcia, J.; Teodorescu, R. Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters. IEEE Trans. Ind. Electron. 2013, 60, 1271–1280. [Google Scholar] [CrossRef]
- Xiangwu, Y.; Yang, C. Control Strategy for Parallel Inverters Based on Virtual Impedance in AC Microgrid. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Hang, L.; Uceda, J. Control of distributed uninterruptible power supply systems. IEEE Trans. Ind. Electron. 2008, 55, 2845–2859. [Google Scholar] [CrossRef]
- Mishra, M.K.; Lal, V.N. An Improved Proportional Resonant Controller for Current Harmonics Reduction and Power Ripples Mitigation of Self-Synchronized Grid-tied PV System under Distorted Grid Voltages. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021-Proceedings, Vancouver, BC, Canada, 10–14 October 2021; pp. 939–944. [Google Scholar] [CrossRef]
- Vasquez-Plaza, J.D.; Patarroyo-Montenegro, J.F.; Campo-Ossa, D.D.; Sanabria-Torres, E.A.; Lopez-Chavarro, A.F.; Andrade, F. Formal Design Methodology for Discrete Proportional-Resonant (PR) Controllers Based on Sisotool/Matlab Tool. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 3679–3684. [Google Scholar] [CrossRef]
- Han, G.; Xia, Y.; Min, W. Study on the three-phase PV grid-connected inverter based on deadbeat control. In Proceedings of the 2012 Power Engineering and Automation Conference, Wuhan, China, 18–20 September 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Ma, M.; Li, P.; Li, B. Study on deadbeat control strategy for grid-connected distributed generation system. In Proceedings of the 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008; pp. 2553–2557. [Google Scholar] [CrossRef]
- Barrero-González, F.; Milanés-Montero, M.I.; González-Romera, E.; Romero-Cadaval, E.; Roncero-Clemente, C. Control strategy for electric vehicle charging station power converters with active functions. Energies 2019, 12, 3971. [Google Scholar] [CrossRef]
- Gaddameedhi, S.; Susheela, N. Improved Power Sharing Strategy for Parallel Connected Inverters in Standalone Micro-grid. Int. J. Electr. Electron. Res. 2024, 12, 329–337. [Google Scholar] [CrossRef]
- Egwebe, A.; Fazeli, M.; Igic, P.; Holland, P. Load sharing methods for inverter-based systems in islanded microgrids: A review. Facta Univ.-Ser. Electron. Energetics 2017, 30, 145–160. [Google Scholar] [CrossRef]
- IEEE Std 519-2014; Recommended Practice and Requirements for Harmonic Control in Electrical Power Systems. The Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2014. Available online: https://standards.ieee.org/standard/519-2014.html (accessed on 17 August 2025).
- Arranz-Gimon, A.; Zorita-Lamadrid, A.; Morinigo-Sotelo, D.; Duque-Perez, O. A review of total harmonic distortion factors for the measurement of harmonic and interharmonic pollution in modern power systems. Energies 2021, 14, 6467. [Google Scholar] [CrossRef]
Ref. | Control Strategy | Inverter Type(s) | Harmonic Handling | Communication Needed |
---|---|---|---|---|
[15] | Single-inverter APF | 2-level VSI | Basic compensation | None |
[27] | Parallel hybrid/primary + APF | 2-level + multi-level VSI | Enhanced harmonic mitigation | Low |
[20] | Hierarchical droop (secondary/tertiary) | Mixed | Moderate (with restoration) | High |
[23] | Primary droop + harmonic compensation | Multi-level VSI | >25% THD reduction | None |
[24] | Primary droop (DC nanogrid) | VSI | Stable, low harmonics | None |
[28] | Decentralized droop | Various VSIs | Adaptive, robust | None |
[29] | Hybrid droop | 2-level + multi-level (hybrid) | Effective THD reduction | Minimal |
This work | Primary droop + compensation | 2-level VSI + 3-level T-type | Targeted, direct compensation at load | None |
Description | Symbol | Value |
---|---|---|
DC voltage | 725 V | |
System frequency | f | 50 Hz |
Switching frequency | 50 kHz | |
LCL Filter inductance | , | 1 mH |
LCL Filter resistance | , | |
LCL Filter capacitance | ||
Damping resistance | ||
Resistive load (linear load) | ||
Resistive load (non-linear load) | ||
Rectifier output capacitor | ||
PR voltage controller proportional gain | 0.025 | |
PR voltage controller resonant gain | 50 | |
PR current controller proportional gain | 20 | |
PR current controller resonant gain | 15,000 | |
Maximum active power rating | 5 kW | |
Maximum reactive power rating | 1.5 kVAR |
Harmonic Order | without (%) | with (%) |
---|---|---|
3 | 4.97 | 1.61 |
5 | 4.5 | 1.45 |
7 | 2.28 | 1.06 |
11 | 2.17 | 0.76 |
13 | 1.90 | 0.4 |
THDv | 15.82 | 5.28 |
Harmonic Order | without (%) | with (%) |
---|---|---|
3 | 4.5 | 1.17 |
5 | 3.21 | 1.13 |
7 | 2.53 | 0.16 |
11 | 1.45 | 0.16 |
13 | 1.37 | 0.08 |
THDi | 13.06 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, A.W.; Minambres-Marcos, V.; Roncero-Clemente, C. A Residential Droop-Controlled AC Nanogrid with Power Quality Enhancement. Electronics 2025, 14, 3306. https://doi.org/10.3390/electronics14163306
Aslam AW, Minambres-Marcos V, Roncero-Clemente C. A Residential Droop-Controlled AC Nanogrid with Power Quality Enhancement. Electronics. 2025; 14(16):3306. https://doi.org/10.3390/electronics14163306
Chicago/Turabian StyleAslam, Ayesha Wajiha, Víctor Minambres-Marcos, and Carlos Roncero-Clemente. 2025. "A Residential Droop-Controlled AC Nanogrid with Power Quality Enhancement" Electronics 14, no. 16: 3306. https://doi.org/10.3390/electronics14163306
APA StyleAslam, A. W., Minambres-Marcos, V., & Roncero-Clemente, C. (2025). A Residential Droop-Controlled AC Nanogrid with Power Quality Enhancement. Electronics, 14(16), 3306. https://doi.org/10.3390/electronics14163306